Influence of deposit architecture on intrastratal deformation, slope deposits of the Tres Pasos Formation, Chile

Neal C. Auchtera, Brian W. Romansa, Stephen M. Hubbardb

© 2016 Elsevier B.V. All rights reserved.

Sedimentary Geology 341 (2016) 13–26

1. Introduction

Slope sediments on both passive and active margins deform and fail across a broad range of scales ranging from soft sediment deformation and sediment remobilization near the sediment–water interface to submarine landslides and mass movements that incorporate significant volumes of slope deposits. Deformational styles are characterized by updip extension and downdip compressional features that occur above a detachment surface. Conditions for failure and deformation include the presence of weak layer(s) that serve as a detachment surface, competency contrasts that allow for detachment and downslope movement, deformation above a detachment surface, and a triggering mechanism(s) that initiates failure. Slope failure processes and products are well documented at scales resolvable by seismic-reflection surveys and in instances of extensive downslope failure, but the processes and products associated with intermediate-scale slope deformation are poorly understood.

Intrastratal deformation is defined as stratigraphically isolated zones of deformation bounded above and below by concordant and undeformed strata. In this study, outcrop examples of intrastratal deformation from the Upper Cretaceous Tres Pasos Formation are used to elucidate the influence of depositional architecture on slope deformation. The facies distribution associated with compensational stacking of lobe deposits is shown to have a first-order control on the location and style of deformation. Detachment planes that form in mudstone deposits associated with lobe fringe and interlobe deposits are spatially limited and deformation is restricted to interbedded sandstone and mudstone associated with off-axial lobe positions. Downslope translation was arrested by stratigraphic buttresses associated with more sandstone-prone axial deposits. Emplacement of a regionally extensive mass transport deposit is interpreted as the triggering mechanism for contemporaneous intrastratal deformation of ~60 m of underlying stratigraphy. A vertical increase in ductile deformation through the deformation interval indicates the role of burial depth and compaction. Distinguishing synburi nal intrastratal deformation (10s of m below seafloor) from tectonic or at-seafloor deformation has important implications for interpretations of burial history, slope stability, and potential triggering mechanisms.

© 2016 Elsevier B.V. All rights reserved.
Mass transport deposits (MTDs) result from gravity-driven mass failure and downslope movement of previously deposited material (Dott, 1963; Nardin et al., 1979; Moscardelli and Wood, 2015). These deposits encompass a range of geometries and internal characteristics associated with limited downslope mass movement of slumps and slides with correspondingly minor internal deformation, to significant downslope movement of rafted blocks and debris flows, recording complete evacuation from the failure position. Such mass–wasting processes result in some of the largest sedimentary deposits on Earth (Haider, 1989; Winn and Dott, 1977; Winn and Hessler, 2005; Shultz and Hubbard, 2005; Hubbard et al., 2010, 2014; Armitage et al., 2009; Covault et al., 2009; Romans et al., 2009, 2010; Fosdick et al., 2011; Bernhardt et al., 2012; Malkowski et al., 2015; Schwartz and Graham, 2015). Hubbard et al. (2010) demonstrated that progradation of a foredeep-axial slope system with ~1 km shelf-to-basin relief infilled the basin during the Late Cretaceous linked to relatively high-magnitude and long-lived foredeep subsidence. The Tres Pasos Formation represents the slope depositional system, which is genetically related to shallow-marine and deltaic deposits of the overlying Dorotea Formation (Fig. 1).

In the northern part of the Ultima Esperanza District, outcrops have been studied at Cerro Divisadero (Romans et al., 2009), Cerro Escondido (Covault et al., 2009), along the Rio Zamora at Cerro Cagual (Shultz et al., 2005), along the Rio de Las Chinas (Schwartz and Graham, 2015), and Sierra Contreras (Armitage et al., 2009) (Fig. 1A). Outcrops occur along generally east-dipping ridges with minor structural complications (e.g., local west-verging reverse faults with 10–50 m of offset and associated drag folds). In this region, Tres Pasos Formation stratigraphic thickness ranges from 1 to 1.5 km with stratigraphic architectures dominated by: (1) discordant mudstone-rich intervals interpreted as MTDs; (2) lenticular to tabular sandstone-rich bodies interbedded with concordant siltstone and mudstone packages interpreted as turbidite deposits; and (3) thick units of thin-bedded turbidites attributed to slope sedimentation lateral to major down-slope sediment-routing systems (Romans et al., 2011). Tide- and wave-influenced shallow-marine and fluvial deposits of the lowermost Dorotea Formation overlie the Tres Pasos Formation and are interpreted to represent a shelf-edge deltaic sequence (Covault et al., 2009; Schwartz and Graham, 2015). The prevalence of MTDs within the Tres Pasos succession suggests a depositional system in which slope failure was an important process that influenced deposition.

This study is restricted to outcrop exposures along the Rio Zamora valley at Cerro Cagual, which comprise heterolithic and sandstone-rich turbiditic deposits intercalated with MTDs (Fig. 2). The study area is focused along a ~1 km long by ~70 m thick depositional dip-parallel outcrop of almost 100% exposure, which is part of a ~3.5 km long transect along the Rio Zamora valley (Fig. 2).

3. Stratigraphic data and analysis

Stratigraphic data for the study area include 15 measured sections logged at cm-to dm resolution along the 3.5 km Rio Zamora transect (Fig. 2B), with an additional series of sections logged at cm resolution (Fig. 3A). High-resolution photomosaics provide additional stratigraphic context and information about facies association transitions (e.g., Fig. 2C). Stratigraphic sections capture characteristic
grain size, bed thickness, physical structures, and the nature of bedding contacts. Paleo
flow was measured from flutes, grooves, and current parting lineations.

3.1. Sedimentary facies associations

Sedimentation units, lithological beds, and their internal sedimentary structures represent the fundamental order of observation. A sedimentation unit is interpreted to record all deposition that occurs from a single subaqueous sedimentary density flow (e.g., turbidity current, hyperconcentrated density flow, or debris flow; sensu Lowe (1982); see also Mulder and Alexander (2001); Talling et al. (2012)). Internal divisions and sedimentary structures are identified and described based on characteristics outlined by Bouma et al. (1962) and Lowe (1982). Beds of similar affinity are grouped as bedsets, which form the next hierarchical order of observation. Bedsets that can be mapped laterally at the outcrop scale (10s of meters) are grouped into distinct facies associations.
We subdivide the deposits of the Tres Pasos Formation into four sedimentary facies associations: (i) thick-bedded sandstone facies (TBS); (ii) interbedded sandstone, siltstone and mudstone facies (ISM); (iii) heterolithic thin-bedded facies (HSM); and (iv) chaotically bedded mudstone facies (CBM) (Table 1). Deposits are described in accordance with a stratigraphic approach wherein no a priori interpretation of depositional environment is applied at any hierarchical level.
3.2. Stratigraphic framework and general depositional model

Intervals of turbidite deposits bound above and below by widely spread MTDs are referred to as packages. Packages range in thickness from 10 to 60 m and can be mapped continuously along the transect at the multi-kilometer scale (>3.5 km). Packages comprise multiple genetically related bedsets, which are commonly composed of multiple facies associations. Bedsets are separated by stratigraphic surfaces,

Table 1

<table>
<thead>
<tr>
<th>Facies associations</th>
<th>Dominant grain-size</th>
<th>Sedimentary structures</th>
<th>Turbidite divisions*</th>
<th>Bounding surfaces</th>
<th>Thickness (m)</th>
<th>Secondary features</th>
<th>Depositional processes</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thick-bedded sandstone (TBS)</td>
<td>Fine to lower medium-grained sandstone</td>
<td>Normally graded; structureless or plane-laminated and/or ripple laminated; amalgamation of beds</td>
<td>S3/Ta-c</td>
<td>Sharp, undulating, or erosional base; gradational or sharp top</td>
<td>30–200</td>
<td>Laterally discontinuous basal mudstone intraclasts (<10 m)</td>
<td>Rapid sedimentation from high density turbidity currents; traction and suspension sedimentation from low-concentration turbidity currents</td>
<td>Axial to off-axial lobe deposits</td>
</tr>
<tr>
<td>Interbedded sandstone, siltstone, and mudstone (ISM)</td>
<td>Fine-grained sandstone; siltstone; mudstone</td>
<td>Normally graded; planar to ripple laminated sandstone; structureless or faintly laminated siltstone</td>
<td>Tb-e</td>
<td>Sharp or undulating base; sharp top</td>
<td>5–30</td>
<td>Beds significantly thickened and thin laterally across 10 m of meters</td>
<td>Traction and suspension sedimentation from low-concentration turbidity currents</td>
<td>Off-axis to fringe lobe deposits</td>
</tr>
<tr>
<td>Heterolithic thin-bedded siltstone and mudstone (HSM)</td>
<td>Siltstone; mudstone</td>
<td>Normally graded; ripple to faint planar laminations</td>
<td>Tr-e</td>
<td>Sharp base; sharp top</td>
<td>15–200</td>
<td>Thin (<5 cm) lower fine to very fine-grained sandstone beds rare</td>
<td>Hemipelagic settling; suspension settling from dilute turbidity currents</td>
<td>Distal lobe fringe and interlobe deposits</td>
</tr>
<tr>
<td>Chaotically bedded mudstone (CBM)</td>
<td>Dominantly siltstone and mudstone; sandstone rare</td>
<td>Dominantly discordant to chaotic; some soft-sediment deformation; laterally discontinuous parallel laminations</td>
<td>-</td>
<td>Sharp, discordant, locally erosional base; sharp or variable top</td>
<td>3–50</td>
<td>Rafted blocks of siltstone and/or sandstone</td>
<td>Mass wasting (slumps/slides); cohesive freezing of matrix-supported debris flows</td>
<td>Mass transport deposits (MTDs); variable topography at tops of individual deposits</td>
</tr>
</tbody>
</table>

* S divisions are from Lowe (1982); T divisions are from Bouma (1962).
including laterally continuous mudstone horizons and low-relief erosional scours. Bedsets are dominantly tabular where composed of TBS, and are tabular to wedge-shaped where composed of ISM and HSM. Lateral changes in facies association and bedset thickness, in some instances thinning to termination (e.g., no traceable beds), are observed throughout the study area (Figs 3A). Facies association transitions and lateral bed thickness changes also reveal laterally offset, or compensational, stacking of bedsets (sensu Mutti and Sonnino, 1981; Deptuck et al., 2008; Prélat et al., 2009). The constructional nature of bedsets (i.e., lack of mappable erosional surface), lateral thinning despite the lack of evidence for significant erosional scour, and compensational stacking support an interpretation of lobe deposits for the MTD-bounded packages within the study area (Mutti and Sonnino, 1981; Deptuck et al., 2008; Prélat et al., 2009). The sedimentary bodies referred to here as lobes include zones of erosional scour, which suggest some degree of channelization. However, these zones are both rare in occurrence and minor in erosional relief (<3 m) in what are dominantly depositional geometries.

3.3. Local stratigraphic data and interpretation

Outcrop data was collected from the 70 m thick stratigraphic section that extends from the Rio Zamora uplands to the base of a regionally extensive (>150 m by >10 km in dip profile) MTD, referred to here as MTD1 (Fig. 2B). Strata are characterized by three ~15–20 m thick turbiditic packages separated by ~5 m thick MTDs. Unit A at the bottom of the interval is only exposed in the northern extent of the study area, and a depositional package above Unit C is locally eroded and deformed by MTD1 (Fig. 2D). The majority of field measurements focus on Units B and C due to field access. Units B and C are dominated by facies associations ISM and HSM, though TBS deposits are also present. Measurements record dominantly southeasterly paleoflow (mean of 150°; Fig. 2).

The areal extent of an individual lobe and the lateral shifting of successive lobes through time are fundamental controls on resulting stratigraphic architecture (Straub and Pyles, 2012). Similar to studies of submarine lobe systems from outcrop (e.g., Prélat et al., 2009) and seafloor/shallow subsurface datasets (e.g., Deptuck et al., 2008), we recognize lateral facies association transitions in Units B and C from thick-bedded sandstone (TBS), interpreted as lobe axis deposits, to interbedded sandstone and siltstone (ISM) off-axis deposits, to silt- and mudstone-prone (HSM) lobe fringe deposits. This axis-to-fringe transition occurs both in longitudinal and cross-sectional profiles with individual lobes stratigraphically separated from underlying and overlying lobes by widespread fine-grained deposits, or interlobe strata.

At larger spatial and temporal scales, and superimposed on lateral lobe switching, are progradational, aggradational, and retrogradational phases of lobe stacking (Prélat et al., 2009; Prélat and Hodgson, 2013). The net result is a 3D mosaic of the facies associations that transition laterally in a relatively predictable fashion (e.g., ISM transitions to HSM in one direction and TBS in the other) but change vertically in a less predictable fashion (e.g., HSM transitions to TBS). Facies association heterogeneity in Units B and C is interpreted to result from lobe depositional processes occurring over various spatial and temporal scales. The mechanical and rheological differences between the different facies associations, which are influenced by grain size, grain packing, clay content and compaction, have important implications for subsequent deformation.

4. Deformation data and analysis

Measurements of deformed strata include the orientation of fault planes, slickenlines, and fracture planes. Field measurements were used in combination with photomosaics and differential GPS to calculate the amount of offset on faults, to determine the amount of extension and shortening, and to provide stratigraphic context for deformational features. Planar measurements were restored and plotted on a stereonet (Allmendinger et al., 2011; Cardozo and Allmendinger, 2013). All measured fault planes are reported after correcting for regional tectonic deformation (350/38 E). Planes are restored to 0° and do not account for any dip that may have been associated with the paleoslope. Regional tectonic tilt is oriented eastward, therefore correctional rotation does not influence inferred paleoslope angle (i.e., southward).

Distinguishing between deformation associated with slope processes and tectonic deformation is inherently challenging in uplifted foreland basin deposits. In the Magallanes Basin, Cretaceous strata have been regionally tilted to the east as a result of post-Cretaceous propagation of the Patagonian fold-thrust belt in the Eocene through present (Wilson, 1991; Fosdick et al., 2013). Local deformation occurs in Tres Pasos Formation strata in the form of reverse faults and associated west-northwest verging drag folds. Regional tilting, associated backthrusting, and related fracture orientations have been identified and documented in the study area and are consistent with published structural interpretations for the Magallanes Basin (Wilson, 1991; Fosdick et al., 2011, 2013) (Fig. 3B).

4.1. Occurrence and style of deformation

Deformational features are bound above and below by undeformed, concordant strata and preferentially overlie discrete mudstone intervals (HSM). Dip directions of faults are generally oriented parallel to paleoslope based on alignment with paleoflow indicators. For clarification, we use the terms ‘downdip’ and ‘updip’ to refer to the relative position of features on a slope, and the terms ‘downslope’ and ‘upslope’ to refer to processes or movement in that direction.

Extensional features include normally faulted single beds, normally faulted bedsets that are offset as coherent blocks, and bed-scale boudining. Measured fault plane orientations show displacement in a downdip direction (SE; e.g., Fault 1) and antithetically in an updip direction (NW; e.g., Fault 2) (Figs. 3, 4). Bed-scale boudinage is characterized by brecciated and isolated, or ‘floating,’ sandstone bed segments encased in ductilely deformed mudstone (Fig. 4C). Based on a pre-deformation line length the apparent extension across the interval of bed-scale boudinance is ~12 m.

Intrastratal compressional features comprise reverse faults including isolated faults or duplex-style thrusts separating imbricated bed segments, bedsets offset as coherent blocks, dextrally folded bedsets, and ductilely deformed mudstone deposits. Deformation is generally restricted to facies associations ISM and HSM. Bedsets faulted as coherent units are characterized by vertically displaced blocks with thrust faults at both their downdip and updip extent (e.g., Unit B; Fig. 3B).

There are two duplex-style deformed beds in Unit B (Fig. 4B; Beds 4 and 5), which are ~20–30 cm thick and interbedded with ~10–20 cm thick mudstone intervals (ISM) (Fig. 4). The upper of the two beds consists of 26 discrete imbricated bed segments bound by southeast-dipping reverse faults. Orientation of the imbricated fault planes, bed thickness at the updip ‘origin’, maximum thickness of each bed segment (typically at the center of the segment), the downdip ‘terminus’ thickness, bed segment length from origin to terminus, and the orientation of additional fracture planes on bed segments are summarized in Appendix A. In order to calculate shortening, each bed was measured at its center where it is assumed to be the original bed thickness of
~26 cm based on measurements from the concordant positions of the bed adjacent to the deformational zone. The bed segment was then marked at the updip and downdip extent where the bed thickness was half of the central ‘full’ bed thickness. Bed segments were then restored based on measured half thicknesses to account for overlap and deformational thinning. The length of duplex-style deformation is 21 m and the sum of all measured segments is 33 m, which results in 12 m of apparent shortening. Shortening is balanced by ~12 m of apparent extension at the north (updip) end of the deformational zone characterized by boudinage and ductile deformation of HSM deposits (Fig. 4).

4.2. Timing of deformation

Based on observations and arguments discussed above, a tectonic origin for the observed deformation features is unlikely. In the context of deformation related to the depositional slope, two hypotheses for the depth and timing of deformation are considered: (1) deformational features formed below the seafloor in buried sediment as a result of a single event, and (2) deformational features that occurred at the seafloor and, thus, at differing times upwards through the succession. Here we review depositional patterns and architecture, and their association with deformational features, in order to evaluate these competing interpretations. Detailed examples are drawn from bed-scale observations in Unit B, as well as qualitative observations from the succession as a whole. Beds and genetically related bedsets in Unit B are numbered in Fig. 4B for reference.

The first set of observations addresses a 33 m long zone of deformation in Unit B that influences Beds 4 and 5 above and to the north of Fault 1 (Fig. 4A, B). Duplex-style deformation of Beds 4 and 5 are generally uniform in style, with dips to the southeast. This interval is evidence for the prevalence of ductile deformation, particularly apparent in HSM deposits surrounding Beds 4 and 5 (Fig. 4C). HSM deposits underlying Bed 5 are ductilely deformed and compacted into subtle mounds (black dashed line Fig. 4B). HSM deposits above Bed 5 are characterized by folded and chaotically deformed laminae. Additionally, Bed 5 segments change orientation and degree of overlap above mounded HSM deposits and grade into more regularly oriented segments from north...
to south (Fig. 4B). These observations indicate that deformation of Beds 4 and 5 was concomitant or occurred sequentially at different times under very similar stress conditions. Similarly, ductile deformation of deposits overlying Bed 5 indicates that either existing HSM deposits deformed commensurate with Bed 5 or were deposited after deformation of Bed 5 and then subsequently deformed. We find a single deformational event to be most parsimonious.

A second set of observations focuses on beds extensionally offset by Fault 2. Fault 2 offsets Beds 5–9 to the northwest with ~10 cm of vertical throw (Fig. 4B). Within that set of beds, Bed 8 is erosionally truncated and was therefore deposited and eroded prior to faulting (Fig. 4B). Based on these stratigraphic relationships, either Beds 5–9 were faulted at the same time, or Fault 2 is a progressive growth fault with each bed offset sequentially. A growth interpretation predicts beds will thicken above the hanging wall on the downthrown side of a normal fault in response to increased accommodation at the seafloor. Due to the uniform offset of all beds and lack of appreciable thickness change for any bed across Fault 2, we interpret Fault 2 to have slipped during a single event that offset Beds 5–9 contemporaneously.

A third set of observations focuses on bed-scale folding and deformation thinning associated with Fault 1. Bed 2 is extensionally offset by Fault 1 with ~1 m of vertical throw (Fig. 4). On the hanging wall of Fault 1, Bed 2 preserves subtle folding characterized by convex-up flexure extending from Fault 1 to Fault 2 (Fig. 4B). Preserved flexure indicates Bed 2 was sufficiently consolidated to sustain and preserve ductile strain associated with vertical displacement of the Fault 1 hanging wall. Additionally, below Fault 2, Bed 3 thins from south to north toward Fault 1 and is not identified at section RZ1C where it has thinned into facies association IHS (Fig. 4B). Bed thickening toward Fault 1 is not consistent with a growth fault interpretation, which would predict the opposite. Bed thinning is consistent with the observation of bed-scale compositional stacking observed throughout the study area.

Combining these lines of evidence we interpret Fault 1 to be a localized bend in a more extensive detachment surface (red dashed line, Fig. 4B) and that all deformation in Unit B is related to movement along that detachment. The bend at Fault 1, where it crosses and offsets Bed 2, produces a steepening bend above Bed 2 and a flattening bend below Bed 2 (Figs. 4B, 5B). Bedding above a convex-up fault surface is predicted to lengthen and bend in order to accommodate the space problem created by the steepening bend during extension and downward vertical offset (Figs. 4B, 5B) (Xiao and Suppe, 1992; Patton, 2005). Brittle rupture and duplex-style stacking of bed segments bound by reverse faults antithetic to Fault 1 may be caused by continued extension over a steepening fault surface (Patton, 2005) and/or interaction with a downdip buttress that causes backthrusting (Vendeville, 2005).

Bedding above a concave-up surface is expected to fold downward to accommodate the space created by extension and may include brittle fracturing along the fold hinge (Xiao and Suppe, 1992). This is consistent with flexure of Bed 2 and the location of Fault 2 (Fig. 4A, B), which is antithetic to Fault 1 and generally projects to the hinge of Bed 2 flexure. Due to this internal consistency and the uniform offset of beds 5–9 by Fault 2, we interpret all deformation associated with Faults 1 and 2 to be contemporaneous and reject the growth fault hypothesis. Considering all of Unit B, we find that calculated apparent shortening above Fault 1 (~12 m) is comparable with calculated shortening further south at Faults 4 and 5 (~11 m) (Figs. 3, 4). We therefore interpret all deformational features in Unit B to be kinematically linked.

Broadening our scope of observation, we consider deformation from all depositional packages within the study area. Comparing duplex-style deformation in Unit A (Fig. 7A, B) with that of Unit B (Fig. 4) and Unit C (Fig. 7C, D, E), there is a qualitative increase in ductile deformation of sandstone beds upwards through the three stratigraphic units. Imbricate bed segments of Unit A are separated by little or no mudstone and bed segments are generally more tabular and isopachous than in Unit B. On the other hand, deformed beds in Unit C are notably more folded than in Unit B (Fig. 7E). These observations indicate that deformation in discrete depositional packages occurred under potentially different rheological conditions. The collection of observations supports the interpretation that deformation occurred below the seafloor and sufficiently precludes an interpretation that deformation occurred at or near the seafloor. We consider all deformation from Units A, B, and C to have occurred at the same time in response to a single triggering event. Based on measured stratigraphic thicknesses and depth below MTD1 we estimate burial depths for each unit to be ~60–70 m (Unit A), ~30–40 m (Unit B), and ~10 m (Unit C). It is unclear how much strata was erosionally removed during deposition of MTD1.

4.3. Conceptual model for intrastratal deformation

Intrastratal deformation at Rio Zamora is interpreted to have occurred via load-induced shear failure triggered by MTD emplacement along multiple detachment planes within the underlying strata. We describe a three-phase model for (1) triggering, (2) failure, and (3) cessation of downslope readjustment. These phases are illustrated in Fig. 5, which is a conceptualized evolution to account for deposits of Unit B, where linked extensional and compositional elements of downslope failure are observed.

4.3.1. Phase 1: triggering via MTD emplacement

We interpret that the emplacement of the regionally extensive MTD1 above Unit C (Fig. 2) was the trigger for intrastratal deformation. Downslope transport and emplacement of MTDs can occur nearly instantaneously following catastrophic failures of slope and shelf deposits (Maslin et al., 2005), imparting a significant increase in lithostatic (normal) stress and shear stress in the direction of transport on underlying strata (van der Merwe et al., 2009). We interpret that MTD1 (thickness ~150 m) emplacement induced a significant increase in normal stress; the plowing and erosion of underlying strata (Fig. 2D) indicates significant shear stress at the interface with the basal MTD surface.

The impacts of rapid emplacement of significant lithostatic load on underlying strata include rapid compaction and dewatering, which can cause abrupt changes in effective stress, liquefaction and/or thixotropic behavior of silt- and clay-rich layers, and development of overpressured layers (Williams, 1960; Lewis, 1971). These effects on underlying slope strata can create conditions appropriate for the development of detachment surfaces.

4.3.2. Phase 2: failure along detachment surfaces

Weak layers that develop into detachment surfaces are relatively laterally continuous (10s to 100s of meters) and occur in stratal stacking patterns that produce significant vertical competency contrasts (e.g., HSM interbedded with TBS). The lateral continuity of weak layers is a function of depositional architecture and is therefore predicted to preferentially occur in distal lobe and/or interlobe facies (HSM), can cause abrupt changes in effective stress, liquefaction and/or thixotropic behavior of silt- and clay-rich layers, and development of overpressured layers (Williams, 1960; Lewis, 1971). These effects on underlying slope strata can create conditions appropriate for the development of detachment surfaces.

Rapid deposition of silt and fine sand from sediment gravity flows can result in loose packing, relatively high pore-fluid volume, and relatively low shear strength (Williams, 1960). Rapid loading of stratigraphically confined layers of loosely packed silt is consistent with MTD emplacement, and can reduce the volume of the layer, resulting in increased neutral stress (pore-fluid) and decreased effective stress (grain-to-grain contact). Liquefaction can occur if these become equal, at which point the buried intrastratal layer behaves as a concentrated suspension and flows downslope. Upon cessation of flow, the layer returns to solid state (Williams, 1960).

Another potential mechanism for failure along a detachment surface is related to clay fabrics in fine-grained layers. The platy nature of clay...
minerals and their propensity to form flocs results in high porosity and hemipelagic fallout. Such layers can retain relatively high porosities through rapid burial resulting in overpressurization of pore fluids (Morley and Guerin, 1996; Morley, 2003, 2015). Overpressurization lowers shear strength, which can result in ductile flow and shearing. Shearing in high porosity clay-rich sediment has been shown to cause porosity loss and development of clay platelet alignment generally parallel to concordant strata (Day-Stirrat et al., 2013; Cardona et al., 2016). The development of a preferred orientation is interpreted to facilitate continued slip along that plane of weakness, thus creating a positive feedback resulting in shear failure along the plane of preferred orientation (Cardona et al., 2016). Detachment surfaces are interpreted to occur in HSM deposits overlying and/or interbedded with TBS deposits (Figs. 4, 6) via one or both of these mechanisms, as they are not mutually exclusive.

4.3.3. Phase 3: arrested detachment due to stratigraphic heterogeneity

Strata directly overlying detachment surfaces are interpreted to fail in a downslope direction due to the combined forces of gravity and shear stress from the emplaced MTD1. Failure is manifested as extensional faults, folds, and bed-scale boudinage at the updip end of a given detachment surface (e.g., Fault 1; Fig. 4B,C), and compressional faults, folds and contorted bedding at the downdip end (e.g., Fault 4; Figs. 4B, 7E). These updip and downdip deformation zones are consistent with submarine landslides and mass movements (Frey-Martínez et al., 2006; Moscardelli and Wood, 2008). However, an additional element documented in this study is the prevalence of upslope-directed deformation, and particularly upslope thrusts.

We interpret upslope-directed deformation to reflect the limited spatial extent of detachment planes and 3D heterogeneity associated with compensationally stacked bedsets. Lateral transition and vertical juxtaposition with more competent ISM and TBS facies associations resulted in spatial termination of the detachment surface. Therefore, translation above a detachment surface abutted downdip deposits that acted as a stratigraphic buttress. The buried nature of the strata in combination with underthrusting of the translated strata resulted in vertical displacement and upslope backthrusting in addition to downslope thrusts.

5. Discussion

5.1. Depositional influences on intrastratal deformation

5.1.1. Scale and extent of detachment surfaces

We propose that depositional architecture provides a first-order control on the scale and spatial distribution of downslope intrastratal
deformation. The development of weak layers that have potential to become detachment surfaces requires deposition of sediment with relatively low shear strength such as mudstone, and vertical competency contrast with bounding layers of relatively high shear strength such as sandstone (Dott, 1963; L’Heureux et al., 2012; Locat et al., 2014). Sediment rheology can be further influenced by compaction and depth of burial at the time of failure (Alves, 2010; Chang et al., 2014; Sultan et al., 2007). In a lobe depositional setting, low-competency mudstone-prone deposits occur in lobe fringe and interlobe positions whereas high-competency deposits occur in more sandstone-prone lobe axis positions (Fig. 8). In a lobe depositional setting, low-competency mudstone-prone deposits occur in lobe fringe and interlobe positions whereas high-competency deposits occur in more sandstone-prone lobe axis positions (Fig. 8). The 2D extent and 1D length of potential detachment surfaces in longitudinal profile are therefore directly linked to both the scale and stacking patterns of sedimentary bodies. For example, the lobes documented in this study are interpreted to have relatively limited areal extent due to underlying MTD topography (i.e., localized ponding; e.g., Armitage et al., 2008; Jackson and Johnson, 2009). However, a global compilation of outcrop and subsurface data by Prélat et al. (2010) demonstrate that lobes of similar volume vary in depositional area and thickness as a function of larger-scale confinement. The length-scales of detachment planes are therefore also predicted to scale with the lobe system in response to confinement and inherited topography.

5.1.2. Facies and stacking pattern control on stratigraphic buttresses

Lateral facies changes associated with depositional architecture (e.g., lobe axis-to-fringe transition) are also predicted to influence where intrastratal deformation is localized. Sandstone-prone axis deposits (TBS), mudstone-prone fringe deposits and interlobe intervals (HSM) have little internal heterogeneity and can be regarded as relatively uniform high and low shear-strength zones, respectively. Off-axis positions, where interbedded sandstone and mudstone beds have variable thickness (ISM), may have potentially more variable 2D shear strength. This variability in 2D shear strength associated with lateral facies changes, combined with compensational stacking of lobe
elements, produces a 3D matrix of shear-strength heterogeneity (i.e., Unit C, Figs. 3, 6A, B). The result is stratigraphic buttresses characterized by high and low shear-strength elements that are laterally and/or vertically juxtaposed. Intrastratal deformation is predicted to occur in lithologically heterogeneous deposits (ISM) that translate downslope above detachment surfaces (HSM). Downslope translation is subsequently arrested where stratigraphic buttresses are encountered (Fig. 8B, C).

The geometry and deformational features in the Tres Pasos Formation bear important similarities to those documented in submarine landslides; namely, zones of updip extension and downdip compression above a detachment surface. Frey-Martínez et al. (2006) discuss stratigraphic factors that may contribute to the development of frontally confined, or buttressed, landslides. We consider many of the intrastratal deformation features from the Tres Pasos Formation to be geometrically and kinematically analogous to frontally confined landslides with important differences in scale and confinement. The limited downslope translation above detachment surfaces (e.g., ~12 m) in the Tres Pasos Formation example may: (1) be appropriate for the limited length of the architecturally restricted detachment surface and/or; (2) reflect the influence of stratigraphic buttresses wherein the potential energy loss associated with detachment is lower than the potential energy required to overcome the downslope lobe axis barrier (Fig. 8).

5.2. Recognition of intrastratal deformation

Multiple studies have addressed the differences and distinguishing characteristics between soft-sediment versus tectonic deformation (e.g., Elliott and Williams, 1988; Waldron and Gagnon, 2011; Korneva et al., 2016). Criteria generally stipulate that soft-sediment deformation may be achieved via grain-level rearrangement of sediment, ‘superficial’ detachment planes that intersect the seafloor, and/or ductile folding of sandstone beds. In contrast, a ‘rooted’ décollement associated with a shear zone at depth and broad regional extent indicates tectonic deformation. These criteria illustrate the fundamental difference between the two: that soft-sediment deformation necessarily relates to a deposition-al system whereas tectonic deformation does not. Many scales of deformation fall within this broad application of soft-sediment deformation, ranging from bed-scale deformation and sediment remobilization within the kinematic boundary layer at or near the seafloor (Butler et al., 2015) to submarine landslides and mass movements that influence strata 10s of meters below the seafloor (Frey-Martínez et al., 2006; Lamarche et al., 2008; Moscardelli and Wood, 2008, 2015).
The intrastratal deformation presented in this study includes features characteristic of both large- and small-scale end member examples (i.e., ductile folding of individual sandstone beds and downslope movement and deformation of bedsets above detachment surfaces). Placing this suite of deformational features on the spectrum of soft-sediment deformation, however, is non-trivial. An intrastratal deformation interpretation linking all deformational features to a single event or triggering mechanism is significantly different than interpreting each example as having deformed at the seafloor (Figs. 5, 8). The intrastratal interpretation provides insight into aspects of sediment loading and slope stability that have regional or basin-wide implications. An ‘at seafloor’ interpretation, however, necessarily entails that deformational zones in different stratigraphic levels are sequential, as each must have occurred at the seafloor along with sediment accumulation. We interpret deformation from the Tres Pasos Formation to have occurred after burial and leverage our findings to provide insight for distinguishing linked intrastratal deformation from detachment zones at the seafloor.

One stratigraphic relationship that supports an interpretation of intrastratal deformation is the presence and nature of concordant strata overlying deformational zones. Undeformed strata will lack thickness changes or lapout geometries, which indicate deposition was influenced by deformational topography. For example, there should be no stratigraphic growth associated with extensional faults. Another important stratigraphic relationship is abrupt lateral transitions between concordant strata and deformational zones of the equivalent bed or bedset. Finally, the orientation of intrastratal deformation features should be generally with the inferred paleoslope.

Depositional architecture as a deformational control predicts that location of intrastratal deformation reflects the 3D stratal stacking patterns associated with the slope depositional system, which distinguishes intrastratal deformation from more through-going detachment planes that are present in some shale intervals or salt layers. While we demonstrate intrastratal deformation controlled by lobe depositional architecture, these relationships need not be restricted to lobes. Sinuous submarine channel complexes also produce heterogeneity associated with channel-margin transitions, as do longer term depositional architectures that form due to lateral channel migration and vertical aggradation throughout the evolution of a channel complex (c.f. McHargue et al., 2011; Bain and Hubbard, 2016). Based on outcrop observations and experimental results, Moretti et al. (2003) suggested that the competency contrast between channel axis and margin/levee deposits would promote the development of fractures and what they refer to as ‘syn-sedimentary shear zones’, which develop parallel to channel margins. We further speculate that channel meander bends where crevasse splays are common may also produce conditions favorable for intrastratal deformation in splay deposits because they juxtapose typically mudstone-prone overbank deposits with tabular, massive sandstone-prone splay deposits.

6. Conclusion

Intercalated turbidite and mass transport deposits (MTDs) of the Tres Pasos Formation, southern Chile, record examples of slope-parallel intrastratal deformation that are distinct from at-seafloor (soft
sediment) deformation or regional tectonic deformation. Intrastratal deformation is defined as stratigraphically isolated zones of deformation bounded above and below by concordant and undeformed strata. Turbiditic strata are composed of mudstone, thinly interbedded sandstone and mudstone, and thick-beded sandstone facies that are arranged as a compensationally stacked lobe deposits. Intrastratal deformation within lobe deposits is interpreted to have occurred via load-induced shear failure triggered by MTD emplacement along multiple detachment planes. Detachment planes preferentially develop in discrete, fine-grained weak layers. The location and spatial extent of weak layers are a function of depositional architecture.

The compensational stacking of lobe deposits and associated facies distribution has a first-order control on the location and style of deformation. Detachment planes that form in sandstone-prone lobe axis deposits. Upslope backthrusts within deformational zones are interpreted to result from spatial separation of the detachment plane and/or mobile strata underthrusting and abutting downslope stratigraphic butresses such as lobe axis deposits. Deformed intervals bound above and below by undeformed units indicate shear strength variability within buried strata that reflect the 3D heterogeneity associated with depositional architecture and stacking patterns. A vertical increase in ductile deformation through the deformation interval indicates the role of burial depth and compaction on sediment rheology.

The occurrence, scale, style, and thickness of intrastratal deformation offer important insight into conditions and processes associated with slope failure, mass movements, and submarine landslides. Identification of intrastratal deformation has implications regarding sediment burial history, slope stability, and potential triggering mechanisms for slope failure.

Acknowledgments

Funding was generously provided to Chile Slope Systems Joint Industry Project (CSS JIP) by our sponsors: Chevron, ConocoPhillips, Statoil, Shell, BG Group, Marathon Oil, Talisman Energy, Anadarko, Hess, BP, BHP Billiton, Maersk, and Nexen. We thank students and instructors including: Lisa Stright, Sebastian Kaempfe, Sarah Southern, Dan Hill, and below by undeformed units indicate shear strength variability such as lobe axis deposits. Deformed intervals bound above and below by undeformed units indicate shear strength variability within buried strata that reflect the 3D heterogeneity associated with depositional architecture and stacking patterns. A vertical increase in ductile deformation through the deformation interval indicates the role of burial depth and compaction on sediment rheology.

The occurrence, scale, style, and thickness of intrastratal deformation offer important insight into conditions and processes associated with slope failure, mass movements, and submarine landslides. Identification of intrastratal deformation has implications regarding sediment burial history, slope stability, and potential triggering mechanisms for slope failure.

Acknowledgments

Funding was generously provided to Chile Slope Systems Joint Industry Project (CSS JIP) by our sponsors: Chevron, ConocoPhillips, Statoil, Shell, BG Group, Marathon Oil, Talisman Energy, Anadarko, Hess, BP, BHP Billiton, Maersk, and Nexen. We thank students and instructors including: Lisa Stright, Sebastian Kaempfe, Sarah Southern, Dan Niquet, Sarah Jancuska, Ben Daniels, Aaron Reimchen, Dan Hill, and below by undeformed units indicate shear strength variability such as lobe axis deposits. Deformed intervals bound above and below by undeformed units indicate shear strength variability within buried strata that reflect the 3D heterogeneity associated with depositional architecture and stacking patterns. A vertical increase in ductile deformation through the deformation interval indicates the role of burial depth and compaction on sediment rheology.

The occurrence, scale, style, and thickness of intrastratal deformation offer important insight into conditions and processes associated with slope failure, mass movements, and submarine landslides. Identification of intrastratal deformation has implications regarding sediment burial history, slope stability, and potential triggering mechanisms for slope failure.

Wilson, T.J., 1991. Transition from back-arc to foreland basin development in the southernmost Andes: stratigraphic record from the Ultima Esperanza District, Chile. GSA Bulletin 103, 98–111.
