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ABSTRACT

The products of sediment-laden turbidity currents that traverse areas of
decreasing confinement on submarine slopes include erosional and deposi-
tional features that record the inception and propagation of deep-sea chan-
nels. The cumulative stratigraphic expression and deposits of such transitions,
however, are poorly constrained relative to depositional settings dominated by
end-member confined (i.e., submarine channel fill) and unconfined (i.e., lobe)
deposits. Upper Cretaceous strata of the Magallanes foreland basin in south-
ern Chile are characterized by a variety of stratigraphic architectural elements
in close juxtaposition both laterally and vertically, including: (1) low-aspect-
ratio channelform bodies attributed to slope channel fills; (2) high-aspect-ratio
channelform bodies interpreted as the deposits of weakly confined submarine
channels; (3) lenticular sedimentary bodies considered to represent the infill of
laterally coalesced scours; (4) discontinuous channelform bodies representing
isolated scour fills; and (5) a cross-stratified, positive-relief sedimentary body,
which is interpreted to record an upslope-migrating depositional bedform.
These elements are interpreted to have formed at a submarine sediment rout-
ing system segment characterized by a break in slope, and an accompanying
decrease in confinement. The various architectural elements examined are in-
terpreted to record a unique stratigraphic perspective of turbidite channels at
various stages of development, from early-stage discontinuous and isolated
scour fills to low-aspect-ratio channel units.

B INTRODUCTION

Sandstone-prone sedimentary bodies and component beds from deep-
water strata contain critical information about the processes of sediment
transfer in poorly constrained slope settings (e.g., Mutti and Normark, 1987,
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1991; Hubbard et al., 2014) and the distribution of reservoirs within petrolifer-
ous continental margins around the globe (e.g., Posamentier and Kolla, 2003;
Mayall et al., 2006; Deptuck et al., 2003, 2007). Two end-member sedimentary
body architectural styles are most commonly considered: channelform fill and
lobate or sheet like (Fig. 1). They are expressed at a range of scales, and ob-
served in many different types of data including seismic reflection (e.g., Gulf
of Mexico, Posamentier, 2003; offshore Nigeria, Deptuck et al., 2003), modern
seafloor and/or shallow subsurface (e.g., Lucia Chica channel system, Maier
et al., 2011, 2013; La Jolla fan, Normark, 1970; Navy fan, Normark et al., 1979),
and outcrop (e.g., Brushy Canyon Formation, Beaubouef et al., 1999, Gardner
et al., 2003; Karoo Basin, Prélat et al., 2010, Hodgson et al., 2011). However,
the stratigraphic expression of transitional segments of a sediment-routing
system, spatially between confined channels, weakly confined channels, and
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Figure 1. Schematic diagram of deep-water sediment-routing systems. The locations discussed
herein include intraslope zones of decreasing confinement, channel-lobe transition zones, over-

bank and/or channel flank, and intrachannel areas.
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unconfined lobes, remains elusive or not as well documented in these same
data sets (Fig. 1). Discrimination of channel-lobe transition zone deposits in
outcrops has been a recent emphasis (e.g., Morris et al., 2014; Van der Merwe
et al., 2014; Marini et al., 2015), although transitions from confined to weakly
confined channels have not been emphasized despite their prevalence in sea-
floor and seismic data sets (e.g., Adeogba et al., 2005; Gee and Gawthorpe,
2007; McHargue et al., 2011; Maier et al., 2012). It is plausible that recognition
of these deposits in the outcrop sedimentary record has been hindered by lack
of a clear set of defining criteria.

In this study, slope deposit outcrops (Upper Cretaceous Tres Pasos Forma-
tion, Magallanes Basin) are studied in order to determine the stratigraphic
expression of turbidity currents transitioning from confined to less confined
segments of a deep-water sediment-routing system. Depositional context is
critical for interpreting the nature of these potential flow transitions in the rock
record (e.g., Mutti and Normark, 1987, 1991; Vicente Bravo and Robles, 1995;
Elliott, 2000; Fildani and Normark, 2004; Fildani et al., 2013), and the estab-
lished slope position for the Tres Pasos Formation outcrop of interest provides
the necessary foundation for this analysis (Fig. 2; Hubbard et al., 2010).

Our interpretation of this outcrop is necessarily guided and instructed
by observations from the modern seafloor (e.g., Normark et al., 1979; Nor-
mark and Piper, 1983; Wynn et al., 2002; Maier et al., 2011, 2013) and by ex-
perimental (Rowland et al., 2010) and numerical insights (Kostic, 2014). Re-
cently resolved seafloor geomorphologies, including large-scale scours or
flute-shaped depressions, have been documented in diverse deep-water
environments and interpreted as the expression of rapid flow transition; set-
tings include proximal levee and overbank settings, the bases of deep-sea
channels, intraslope zones characterized by changes in seafloor slope, and
channel-lobe transition zones (Fig. 1; Shor et al., 1990; Wynn et al., 2002;
Kostic and Parker, 2006; Kostic, 2011; Maier et al., 2011; Cartigny et al., 2011;
Macdonald et al., 2011).

Theoretically, as turbidity flows pass from confined to less confined
segments of a sediment-routing system, they expand and thicken; this has
a profound impact on flow properties (Garcia and Parker, 1989). This transi-
tion is therefore commonly interpreted to influence erosion and deposition
and, after a protracted period of sediment transfer, the resulting stratigraphic
architecture. Changes in flow characteristics are common in different settings,
including zones where flows encounter an abrupt decrease in slope such as
intraslope minibasins (e.g., Prather et al., 1998; Pirmez et al., 2000; Prather,
2003), and areas where flows pass through breaches in channel banks and
spread into an overbank setting (e.g., Flood et al., 1995; Posamentier and Kolla,
2003; Fildani et al., 2006; Jegou et al., 2008). The manifestations of these zones
in the rock record, although only sporadically described, are characterized by
a spectrum of bed-scale features (e.g., Cazzola et al., 1981; Mutti and Normark,
1987, 1991), as well as juxtaposition of various architectural elements, includ-
ing (1) low-aspect-ratio (i.e., width:thickness) channelform units, and (2) broad,
high-aspect-ratio to tabular sedimentary bodies (i.e., channelform to more
lobate; Cazzola et al., 1981; Mutti and Normark, 1987, 1991).

The primary objective of this work is to establish sedimentological and ar-
chitectural criteria for recognition of flow transition deposits in the ancient rec-
ord, specifically those associated with decreasing confinement of submarine
channels downslope. We present evidence for the stratigraphic products of
submarine channels at various stages of development, from incipient scour to

B PALEOGEOGRAPHIC SETTING AND BASIN STRATIGRAPHY

The Magallanes retroarc foreland basin of southern Chile parallels the
Andean fold-thrust belt (Fig. 2; Fildani and Hessler, 2005; Romans et al., 2010;
Fosdick et al., 2011). The basin consists of 4-5 km of Upper Cretaceous deep-
water strata, including unconfined deposits of the Punta Barrosa Formation,
overlying deep-marine channel belt deposits of the Cerro Toro Formation, and
a progradational slope system consisting of genetically related slope deposits
of the Tres Pasos Formation and deltaic units of the Dorotea Formation (Fig. 3;
Romans et al., 2011). The 1.5-2-km-thick Tres Pasos and Dorotea Formations
record southward axial infill of the foredeep by slope clinoforms that were
400-1000 m thick (Fig. 3; Hubbard et al., 2010; Bauer, 2012). The ~100-m-thick
stratigraphic interval of interest to this study is located ~40 km southward from
coeval shelf-edge deposits, and deposition is considered to have taken place
toward the lower portion of a high-relief (>900 m) slope (Fig. 3; cf. Hubbard
et al., 2010). The strata transition up the paleoslope to stacked slope channel
deposit-dominated units (Fig. 3). These updip units consist of at least 5 dis-
tinct slope channel fills, 15-20 m thick and 200-300 m wide each, that stack
with varying degrees of lateral and vertical offset. The presence of these up-
dip channel units provides important context regarding upslope to downslope
architectural changes in the stratigraphic interval of interest. The stratigraphic
interval plunges into the subsurface south of the study area, limiting interpre-
tations about the downslope segment of the ancient sediment routing system.

The Magallanes Basin was characterized by generally high sediment flux re-
corded by the prograding slope clinoform system (Hubbard et al., 2010; Romans
et al., 2010). Elevated aggradation on the paleoslope is hypothesized to have led
to regular rapid burial of the studied sediment-routing system segments, which
promoted preservation of what are otherwise commonly poorly preserved fea-
tures such as scour fills; therefore, the outcrop offers a unique opportunity to
study commonly elusive formative features in the sedimentary record.

l STUDY AREA AND DATA SET

The Tres Pasos Formation outcrop studied is 1500 m long and ~100 m thick,
situated adjacent to the Parque Nacional Torres del Paine Highway, ~20 km
south of the Villa Cerro Castillo in southern Chile (Fig. 2A). The outcrop com-
prises strike-oriented and dip-oriented faces; this provides some three-dimen-
sional (3-D) control on sedimentary body geometries (Figs. 2B, 2C).
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Figure 2. Overview of the area of interest. (A) Satellite image of the Magallanes Basin outcrop belt featuring major landmarks and past studies done in the region (modified from
Hubbard et al., 2010); in inset line drawing of South America, yellow star indicates study area. (B) Perspective Google Earth satellite image of the study area featuring Laguna
Figueroa at the bottom and the Parque Nacional Torres del Paine Highway adjacent to the outcrop belt. The deposits of interest at Arroyo Picana are highlighted. (C) Southward
view of the outcrop of interest; differential global positioning system was used to survey measured section locations and the stratigraphic surfaces that define sedimentary bodies.
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The data set consists of 42 stratigraphic sections measured at 10-25 m lat-
eral spacing, for a total of 1624 m of section. Emphasis was placed on bed thick-
ness, nature of bed contacts (e.g., sharp, undulatory), grain-size distribution,
and sedimentary structures. Stratigraphic correlation of the closely spaced sec-
tions, high-resolution photomosaic interpretation, and surveying beds in the
field constrained subtle architectural changes, even among thin and lenticular
units. Bed-set boundaries and section locations were surveyed with a differ-
entially corrected, high-resolution (~10 cm) global positioning system (Trimble
ProXRT), and the entire data set was used to construct a digital elevation model
of the outcrop belt (Fig. 2C). Paleoflow measurements (n = 144) were made at
39 locations, primarily derived from sole marks and ripple cross-lamination.

Surveyed stratigraphic surfaces, facies trends (e.g., thickest and most
amalgamated sandstone in flow axes), and paleoflow data were used to map
and extrapolate the 3-D trends of architectural elements. Width:thickness, or as-
pect ratios, are tabulated for strike-oriented cross sections of distinct sedimen-
tary bodies. All data were imported into 3-D modeling software (i.e., Petrel 2013
E&P Software Platform; https://www.software.slb.com/products/petrel), which
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to the south.

facilitated visualization and promoted more accurate mapping (Fig. 2C). In order
to construct geologically reasonable geometries of sedimentary bodies beyond
the outcrop in instances where 3-D exposure was limited, insight was drawn
from published examples of other outcrop and high-resolution seafloor analogs.

B RESULTS
Sedimentary Facies Associations

Four facies associations are identified and interpreted in the study area
(Table 1; Fig. 4). Derived from measured sections, these facies associations
represent a key portion of the data set, summarized in Table 1 with accompa-
nying process-based interpretations. In general, the deposits investigated are
largely the product of both high- and low-density turbidity currents, as well as
a degree of mass transport (cf. Bouma, 1962; Lowe, 1982; Talling et al., 2012;
Postma et al., 2014).
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TABLE 1. FACIES ASSOCIATIONS OF THE ARROYO PICANA OUTCROP

_umo._mw. Lithology, Sand . FA Bed . Lithologic Process-based Lateral relationship
association S o thickness . Physical structures Basal contacts ) . )
(FA) grain size (%) (m) thickness accessories interpretation to other FAs

FA1: Amalgamated, Medium- to 90-100 Variable Lenticular ~ Normal grading, structureless,  Sharp; planar Angular to subrounded High-density turbidity flow; Grades laterally to FA2; flow
thick-bedded fine-grained 0.5-27 0.2-2.5m rare planar and ripple or slightly siltstone clasts abundant scour (Lowe, axis deposits (Mutti and
sandstone sandstone lamination; local dewatering undulatory 1982; Postma and Normark, 1987; McHargue

structures Cartigny, 2014) etal., 2011)

FA2: Nonamalgamated, = Medium- to 60-90 Variable Lenticular  Structureless, planar and Sharp; planar or ~ Angular to subrounded High- to low-density turbidity ~ Transitions laterally to FA1
thick-bedded fine-grained 0.1-1 0.1-0.9m ripple lamination; rare occasionally siltstone clasts flow (Bouma, 1962; and FAS; flow off axis to
sandstone sandstone and cross-stratification; back-set undulatory Lowe, 1982); Cyclic steps margin deposits (Hubbard

siltstone stratification (Postma and Cartigny, etal, 2014)
2014)

FA3: Thinly interbedded  Fine- to very 20-50 Variable Sandstone, Sandstone: normal grading, Sharp Abundant organic Dilute turbidity flows and In some cases, transitions
siltstone and fine-grained 0.1-9 <10cm planar and ripple lamination detritus suspension setting laterally to FA2; flow margin
sandstone sandstone and Siltstone, Siltstone: planar lamination (Bouma, 1962) deposits, also background

siltstone 5-90 cm facies (Hubbard et al., 2014)

FA4: Chaotically Medium- to very 30-70 Variable Chaotic and/or deformed Sharp Abundant organic Cohesive debris flow
bedded siltstone and fine-grained 0.1-2 lamination; dewatering detritus
sandstone sandstone and structures

siltstone

GEOSPHERE | Volume 12 | N

umber 1

Architectural Components

The 2-D to 3-D exposed architectural elements of the Arroyo Picana outcrop
belt include (1) low-aspect-ratio (i.e., width:thickness) channelform bodies;
(2) high-aspect-ratio channelform bodies; (3) relatively high-aspect-ratio, vari-
ably thick and laterally continuous lenticular bodies; (4) discontinuous, low-
relief and low-aspect-ratio channelform bodies; and (5) positive relief and dis-
continuous cross-stratified sandstone units. These architectural components
are described in the context of four broadly correlatable sedimentary pack-
ages, including unit A at the base up through unit D at the top (Figs. 5 and 6).

Low-Aspect-Ratio Channelform Architecture

Description. Channelform sedimentary bodies 7-20 m thick and 170-375 m
wide have aspect ratios between 10 and 20 (Fig. 6). Paleocurrent observations
average ~180° and range from 160° to 220° (Fig. 5). Amalgamated sandstone
(FA1) is prevalent in the axes of these bodies, transitioning to nonamalga-
mated thick-bedded sandstone (FA2) and thinly interbedded sandstone and
siltstone (FA3) laterally, toward the edges of the channelforms (Fig. 7). Basal
surfaces of the bodies truncate underlying strata, and in most instances, are
overlain by fine-grained deposits of FA3. This architecture is observed in units
A and C (Figs. 5 and 7).

Interpretation. Low-aspect-ratio channelform sedimentary bodies are at-
tributed to processes of erosion, sediment bypass, and ultimately filling of
slope channels (cf. Figueiredo et al., 2013; Hubbard et al., 2014). The axis to

margin facies transition records relatively high energy in channel thalwegs
and lower energy toward the margins (e.g., Mutti and Normark, 1987; Clark
and Pickering, 1996; Macauley and Hubbard, 2013). Fine-grained facies directly
overlying basal incision surfaces have been attributed to deposition from the
tails of high-energy flows that bypassed their coarse-grained load basinward
(cf. Mutti and Normark, 1987; Barton et al., 2010; Stevenson et al., 2015). The
particularly wide sedimentary body in unit A is considered a composite feature
consisting of multiple, partially preserved, laterally stacked channel fills (Fig. 5;
cf. channel complex of Campion et al., 2005; Di Celma et al., 2011; McHargue
et al., 2011; Stright et al., 2014).

High-Aspect-Ratio Channelform Architecture

Description. High-aspect-ratio channelform sedimentary bodies are 5-10 m
thick and 200-500 m wide with aspect ratios between 50 and 60. Paleocurrent
observations average ~180° and range from 160° to 200° (Fig. 6). As with the
low-aspect-ratio channelform bodies, this architecture is best reflected in the
distribution of sandstone-dominated strata (Figs. 5 and 7). Amalgamated sand-
stone (FA1) is present in the axes of these bodies with fairly abrupt transitions
laterally to nonamalgamated thick-bedded sandstone (FA2) and thinly inter-
bedded sandstone and siltstone (FA3) at channelform edges. The basal surface
of these channelform bodies is associated with truncation of underlying units,
and the architecture is observed in units C (upper) and D (Figs. 6 and 7).

Interpretation. These sedimentary bodies are attributed to processes of
erosion, sediment bypass, and infilling of slope channels (cf. Hubbard et al.,

Pemberton et al. | Stratigraphic expression of decreasing confinement
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Figure 4. Facies of the Tres Pasos Formation. (A, B) Normally graded structureless to planar laminated (Bouma Ta, Th) amalgamated sandstone of FA1, with local rip-up clasts. Nonamalga-
mated thickly bedded sandstone is also present in B (FA2). (C) Cross-stratified sandstone of FA2. Scale indicated by 10 cm demarcations on jake-staff. (D) Thinly interbedded sandstone
and siltstone of FA3 overlain by FA2. (E) Interbedded siltstone and sandstone of FA3. (F) Contorted bedding characteristic of FA4.

2014). The shallow and broad channel fills are interpreted as weakly confined
turbidite channel elements, which are often found in areas of low to moderate
gradient on a paleodepositional profile (Funk et al., 2012; Brunt et al., 2013;
Fildani et al., 2013). High-aspect-ratio channels often do not effectively contain
thick turbidity currents, and are therefore commonly associated with avulsion
(e.g., Maier et al., 2013; Stevenson et al., 2013).

Lenticular Sedimentary Body Architecture
Description. Lenticular sedimentary bodies are 0.8-12 m thick and 37—

1150 m wide (aspect ratios 50-100). Paleocurrent observations are more
variable than for channelized sedimentary bodies and range from 230° to

150° (Fig. 6). This architecture is characterized by thick (to 12 m) packages
of amalgamated sandstone (FA1) that laterally transition to nonamalgamated
thick-bedded sandstone (FA2), and then back to FA1 (Fig. 8). Thus, the thick-
nesses of sandstone bodies increase and decrease considerably across the
length of the outcrop belt, resulting in boudinage-like cross-sectional geom-
etry. The top surface is generally flat, whereas the basal surface is undula-
tory and associated with truncation of underlying strata. The thickest, most
amalgamated portions of these sedimentary bodies are present in concave-up
depressions (Figs. 5 and 8). In some instances, beds infilling these depres-
sions can be traced for ~1.5 km along strike. In the dip-oriented portion of the
outcrop, these units thin and pinch out distally (Fig. 5). The lenticular sedi-
mentary body architecture is pervasive in unit B and to a lesser degree in
unit C (Figs. 5 and 6).

Pemberton et al. | Stratigraphic expression of decreasing confinement
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Figure 5 (on this and following page). Stratigraphic cross section of the Tres Pasos Formation outcrop at Arroyo Picana. The datum is on the top of major sandstone bodies. Average paleoflow
is southward, shown with measurements summarized in rose diagrams. (A) The outcrop is generally at a slightly oblique strike orientation in the east-west section. V.E.—vertical exaggeration.

Interpretation. This architecture is interpreted to record the sandy infill of
scour fields, such as those attributed to flow regime transition where entrain-
ment is enhanced (Fig. 9) (Mutti and Normark, 1987). Scours can be isolated or
coalesced, associated with rugosity in the depositional profile; if filled by sand,
lenticular sedimentary body geometry is expected (e.g., Normark and Piper,
1991; Vicente Bravo and Robles, 1995; Wynn et al., 2002; Ito et al., 2014). Scour
fields have been observed in channel-lobe transition zones and weakly con-
fined channel settings using side-scan sonar imagery, with cross-sectional mor-

phology comparable to that of the preserved basal surface in the outcrop belt
(cf. Normark et al., 1979; Wynn et al., 2002; Maier et al., 2013). Drawing on these
examples with similar cross-sectional geometry, and with consideration of the
2-D to 3-D exposure of units at Arroyo Picana, we infer original heel-shaped
or flute-like morphology for these sedimentary bodies (cf. Wynn et al., 2002;
Palanques et al., 1995; Macdonald et al., 2011; Maier et al., 2013; Hofstra et al.,
2015). The thickest and coarsest grained portion of the bodies are attributed to
processes in the axes of scours; correspondingly, the lateral bed thinning and

Pemberton et al. | Stratigraphic expression of decreasing confinement
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Figure 5 (continued). (B) The outcrop provides more of a dip perspective in the north-south section.

transition to nonamalgamated sandstone beds is associated with lower energy
off-axis to margin processes (Wynn et al., 2002; McHargue et al., 2011; Mac-
donald et al., 2011). In general, coalesced scours, or scour complexes like those
interpreted, have been reported at abrupt breaks in slope (Wynn et al., 2002).

Discontinuous Channelform Architecture

Description. In strike section, discontinuous channelform bodies are
0.5-6 m thick and 12-250 m wide, associated with aspect ratios between 20
and 30 (Fig. 5). Amalgamated sandstone (FA1) is dominant, although locally

it transitions to nonamalgamated, thick-bedded sandstone (FA2) near the
edges of the channelform; in some instances, an entire sedimentary body is
composed of FA2. Basal surfaces of these bodies are associated with trun-
cation of underlying strata, and the tops are flat. These sedimentary bodies
are typically only exposed on a single outcrop face (Figs. 5 and 6), suggest-
ing that they are isolated features; the largest discontinuous channelform
sedimentary bodies are exposed on both strike and dip outcrop faces, and
substantially thin at their base in the direction of paleoflow (Fig. 5). These
sedimentary bodies are mainly observed in unit C with local expressions in
units B and D (Fig. 7).

Pemberton et al. | Stratigraphic expression of decreasing confinement
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Interpretation. From 2-D and limited 3-D perspectives, these sedimentary
bodies are elongate with scour-like geometries, and are attributed to turbidity
current flow expansion across a transition zone associated with an abrupt de-
crease in confinement (cf. Normark and Piper, 1991). The cross-sectional shape
of the bodies is similar to that of scours observed on the modern seafloor of
continental slopes (e.g., Palanques et al., 1995; Wynn et al., 2002; Paull et al.,
2010), and the 3-D planform insight drawn from these modern analogues sug-
gests a heel- or flute-shaped planform morphology.

Cross-Stratified Positive-Relief Sedimentary Body Architecture

Description. A cross-stratified po e-relief sedimentary body 1-4.5 m
thick is partially contained within depressions 55-135 m across and with as
much as 0.9 m relief (Figs. 5 and 10). The depressions are aligned along the out-
crop face at a bearing of ~100°E, which is parallel to the approximate direction

of paleoflow, as derived from flute casts (102°-135°; Fig. 10). Nonamalgamated
thick-bedded sandstone (FA2) is the dominant lithofacies of the infilling sedi-
mentary body; sandstone is cross-stratified, with stratification dipping 7°-13°
to the north. The top of the body expresses positive relief, and stratification in
the upper portion is parallel to the overlying, undulatory bed top (Fig. 10). Pack-
ages of laminae can be traced into a sigmoid geometry, where at the tips and
tails of the body laminae are more planar (Fig. 10). The cross-stratified body
is present lateral to low-aspect-ratio channel fill of unit C, and is interpreted to
overlie the same composite erosion surface (surface C-2; Fig. 5).
Interpretation. The cross-stratification dips in the opposite direction of paleo-
flow and the unit is interpreted as a positive-relief bedform feature that was
instigated through backfilling of a scour on the seafloor (Postma et al., 2014).
The position of this feature lateral to the low-aspect-ratio channel fill is consis-
tent with an interpretation that it formed in a channel-flank setting (Figs. 5 and
10). Divergent paleoflow between the channel fill (~180°) and channel flank
(102°-135°; Fig. 5) is consistent with lateral flow expansion as confinement
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Figure 7. Channelized stratigraphic architecture. (A) Photomosaic of two channel elements in unit C, each defined by a fine-grained incisional surface (red). The lower element is as much as 19.6 m
thick, and the upper element is 8.7 m thick. Photomosaic location is shown in Figure 5. (B) Line drawing trace.

was overcome. Flow transitions in overbank settings can manifest in the form  the scale of the series of depressions (i.e., scours) and the bedform described
of linear scour trains, termed cyclic steps (Parker, 1996; Kostic and Parker, 2006;  along surface C-2 (Fig. 5) is smaller than those recently described from seafloor
Fildani et al., 2006). In these instances, each step is defined by an abrupt de- and modeling data sets, we consider that the sedimentary body architecture
crease in supercritical flow bounded downstream by a hydraulic jump; this  may be a record of supercritical flow, with back-set cross-stratification indica-
yields formation of upslope-propagating bedforms that fill scours (Parker, tive of antidunes (Middleton, 1965; Pickering et al., 2001) or, more likely, the
1996; Fildani et al., 2006; Cartigny et al., 2011; Macdonald et al., 2011). Although expression of cyclic steps (Kostic, 2011; Covault et al., 2014; Postma et al., 2014).

Figure 8. Lenticular sedimentary body
architecture in unit B. (A) Photomosaic
of 1 ted dstone bodi

(3-8 m thick) that thin and transition
to nonamalgamated beds laterally.
Photomosaic location is shown in Fig-

ure 5. (B) Line drawing trace.
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Depositional Evolution

The sedimentary facies and architectural elements described suggest a
depositional setting variably transitioning between confined, channelized flow
and a less confined setting. The juxtaposition of various distinct architectural
elements is consistent with a locality in which sediment transport processes
and flow regimes changed rapidly, both spatially and temporally. Here we de-
scribe the depositional evolution of the strata at Arroyo Picana in the context of
the four mapped stratigraphic packages (units A to D; Fig. 11).

UnitA

Unit A is dominated by low-aspect-ratio channelform sedimentary bodies;
at least four separate channel elements (cf. Hubbard et al., 2014), defined lo-
cally by a basal surface draped by fine-grained deposits, vertically aggrade and
laterally step to the southeast (Fig. 11). The channel-fill deposit is dominated
by structureless sandstone with local contorted bedding and water escape fea-
tures (FA4; Fig. 4). This composite sandstone-rich unit is mapped along the
west face of the outcrop belt, and its eastern edge is present in three locations
(Fig. 6), constraining its planform extent (Fig. 11).

This unit is considered an organized turbidite channel complex consisting of
a series of channel fills that systematically shifted southeastward (cf. McHargue
etal., 2011).

UnitB

Unit B is characterized by heterogeneous deposits, defined at the base by a
lenticular sedimentary body that extends across the entire outcrop (individual
beds can be traced 1.5 km; Fig. 11). This lenticular sandstone-prone architec-
ture does not appear to correlate across the modern erosional valley, 250 m to
the north (Fig. 2B), suggesting that the sandstone bodies are not continuous
along depositional dip, but occur within a limited zone along the paleodepo-
nal profile (Fig. 6). Between lenticular sedimentary bodies, more isolated
discontinuous channelform sedimentary bodies are present (Fig. 11). This unit
is present along the east-west face of the outcrop in a strike orientation and
projected using paleoflow data; the planform extent of sedimentary bodies
is constrained on the north-south—oriented outcrop face (i.e., dip orientation),
which exhibits distinct thinning (Fig. 11).

The prevalence of lenticular sedimentary body geometries along with iso-
lated discontinuous channel fills is consistent with observations of modern flow
transition zones where large-scale scours commonly develop (Mutti and Nor-
mark, 1991; Wynn et al., 2002; Macdonald et al., 2011; Maier et al., 2012; Hofstra
et al., 2015). The scours in these zones, including channel to lobe and confined
channel to weakly confined channel intraslope transition zones, often coalesce
and carve the seafloor into an undulatory surface. Infilling with sand results in
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Figure 9. Characteristics of the Rhone fan channel-lobe transition zone (CLTZ) (modified from
Wynn et al., 2002). (A) Line drawing from side-scan sonar image of the CLTZ. (B) Shallow seismic
cross section (A-A’) through the CLTZ showing the undulatory nature of the seafloor in this

zone. Yellow shading indicates how filling this zone may result in a high-aspect-ratio lenticular
sedimentary body architecture like that observed in outcrop (Fig. 8; unit B).

the composite high-aspect-ratio sedimentary body documented (Fig. 9). If scours
do not coalesce, more isolated discontinuous channelform bodies with flute-like
scour planforms result (Fig. 11; cf. Wynn et al., 2002; Macdonald et al., 2011).
The 3-D mapping and projection of scour fills in the outcrop belt
(Fig. 11) has relied on consideration and comparison of the sedimen-
tary bodies documented with bathymetrically surveyed scours (Fig.
12). Using published overbank and channel-lobe transition zone met-
rics (i.e., scour width, length, depth, aspect ratio, and width:length ratio),
regression curves were calculated. Given the limited 3-D outcrop ex-
posure, these data were used to provide constraints on planform pro-
jection of sedimentary bodies. While additional scour data are av
able, only examples with lengths, widths, and depths were considered.
These data indicate a trend that channel flank and/or overbank scours
are generally wider than they are long, and scours found in channel-lobe
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transition zones are generally longer than they are wide (Figs. 11 and 12).
Due to these differences in scour scale and geometry, and presumed differ-
ences in formative flow parameters, interpreted channel-lobe transition zone
scour metrics were plotted separately from interpreted channel flank and/or
overbank scour metrics (Fig. 12). We attribute the differences to the propen-
sity for only the upper fraction of a turbidity current to detach from the main
flow body in overbank settings (cf. Piper and Normark, 1983; Bowen et al.,

1984), versus a channel-lobe transition zone where the entire flow thickness
(including the lower, high-density component) goes through deceleration
(Normark and Piper, 1983; Clark and Pickering, 1996). High-density turbidity
currents have a much thicker tractional component than low-density flows
(Lowe, 1982), and we speculate that subjecting this entire flow thickness to
transformation across a hydraulic jump may lead to development of scours
that are generally longer than they are wide (Figs. 11 and 12).
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Unit €

Unit C is composed of two channel fills and adjacent heterogeneous depos-
its (Figs. 5, 7, and 10). A lower low-aspect-ratio channelform sedimentary body
is as much as 19.6 m thick, defined by a distinctive and laterally continuous
(>1 m thick) channel base drape overlying surface C-1 (Figs. 5 and 7). An upper
high-aspect-ratio channelform sedimentary body is much thinner (8.7 m thick)
and shallower, with a higher aspect ratio of ~54 (Fig. 11); it is also defined at
its base by a siltstone drape overlying surface C-2 (Figs. 5 and 7). To the east,

laterally flanking the channel-fill elements and overlying consistent basal ero-
sional surfaces (C-1 and C-2; Fig. 5), are small-scale discontinuous architectural
elements ~30-270 m wide and 0.6-4.6 m thick (Fig. 11). The lower channel
fill is associated laterally with isolated discontinuous channelform bodies that
are infilled mainly with structureless sandstone, while the upper channel ele-
ment is associated laterally with cross-stratified positive-relief bodies (Figs. 5
and 11). These small-scale architectural elements are not observed northward
across the Arroyo Picana valley, although the eastern margins of the larger
channel fills are present (Fig. 11). The continuous downdip exposure of these
two channel fills along the west-facing outcrop, as well as multiple exposures
of their eastern margins at the southern end of the outcrop belt, constrain the
3-D interpretation of the units (Fig. 11).

The architectural components of unit C are attributed to turbidite slope
channel elements and laterally flanking out-of-channel deposits. The vertically
stacked channel fills suggest that the underlying channel was underfilled upon
abandonment, and was therefore the locus for subsequent channelization
(cf. McHargue et al., 2011). Laterally flanking the channel fills of unit C, the
small-scale scourform features are interpreted to have formed in response to
rapid flow regime transition as flows overspilled channel banks (cf. Normark
and Piper, 1991; Vicente Bravo and Robles, 1995; Fildani and Normark, 2004).
Consistent with this interpretation, the out-of-channel elements are composed
of slightly reduced average grain size relative to the channel fills they flank.
The cross-stratified positive-relief body is characterized by paleoflow that is
divergent from that of the associated channel element (Fig. 11); back-set cross-
stratification is consistent with antidunes or cyclic steps (Pickering et al., 2001;
Kostic, 2011; Cartigny et al., 2013).

UnitD

Unit D is characterized by two high-aspect-ratio (~50) channelform bodies
at the eastern edge of the outcrop exposure (Figs. 7 and 11). Although gener-
ally defined by smooth, concave-up bases, the lower element is characterized
by a distinct protuberance that is interpreted as the remnant of a scour (Fig.
5A, feature a). The scour is ~30 m wide and 3 m deep, overlain by channel-fill
deposits across a truncation surface. The 3-D exposure of unit D is limited,
making planform reconstructions highly speculative (Fig. 11). Unit D is overlain
by ~22 m of interbedded siltstone and sandstone (FA3).

Unit D comprises weakly confined channel deposits (cf. McHargue et al.,
2011; Moody et al., 2012; Brunt et al., 2013). Weakly confined channel systems
are interpreted in a range of settings and are generally found in topographic
lows, areas with low slope, or base-of-slope settings (e.g., Campion et al.,
2005; Maier et al., 2011; Moody et al., 2012). The localized scour fill described at
the base of the unit D channel is geometrically comparable in strike section
to geomorphological features described from turbidite channel and canyon
floors in modern seafloor data, albeit at a reduced scale (Paull et al., 2010, 2011;
Cartigny et al., 2011; Maier et al., 2011, 2013; Covault et al., 2014).
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H DISCUSSION
Slope Channel Evolution

The Cretaceous Magallanes Basin margin was dominated by high sedi-
mentation, recorded by a prograding slope clinoform system (Hubbard
et al., 2010; Romans et al., 2011). Enhanced aggradation of sediment on
the paleoslope yielded a particularly thick stratigraphic record of the sedi-
ment-routing system studied, ideal for deducing information about long-lived
sedimentary processes. The outcrop at Arroyo Picana shows variable strati-
graphic architecture within ~100 m of stratigraphic thickness (Fig. 5). Recent
analysis of seafloor data from offshore central California presented by Maier
et al. (2011, 2013; Fig. 13) highlighted geomorphic variations over a fairly lim-
ited area, including leveed channels, broad erosional channels, and trains
of scours, recording slope channels at various evolutionary stages. We con-
sider the possibility that the various architectural components present in the
Arroyo Picana outcrop might record turbidite channels preserved at various
stages of development.

Our hypothesis is that discontinuous channelform features (i.e., scours)
evolve into high-aspect-ratio continuous channelform sedimentary bodies
(i.e., weakly confined channels), and under the influence of protracted flow,
into low-aspect-ratio continuous channelform features (i.e., confined slope
channels; Figs. 13 and 14).

Discontinuous Channelform Architecture

Discontinuous channelform bodies, such as those prevalent in unit B, are
interpreted to record an early evolutionary stage of a turbidite channel (Figs.
8 and 14). Previous workers have considered morphological features with a
similar shape at the base of these stratigraphic bodies as evidence for incipient
channels from analysis of modern acoustic data sets (e.g., Fildani and Nor-
mark, 2004; Fildani et al., 2006; Maier et al., 2011, 2013). Large scours have
been recognized within continuous channels or conduits (cf. Paull et al., 2011),
downslope, and in the direction, of continuous channels (Figs. 13 and 14), as
well as in overbank areas associated with through-going continuous channels
(e.g., Monterey East; Fildani and Normark, 2004; Fildani et al., 2006). The initial
erosional stage of a conduit and the establishment of an erosional template
was proposed by Rowland et al. (2010) based on experimental data. This initial
erosion has been proposed to facilitate the inception of locked-in-place linear
trains of discontinuous scours or net-erosional cyclic steps (Figs. 11 and 14).
The erosional confinement created is thought to focus subsequent flows, often
related to an upslope avulsion node (Fig. 13; Maier et al., 2011, 2012; Fildani
et al., 2013). As flows continue along the trajectory, the discontinuous train of
scours will eventually connect and confinement will develop; a more continu-
ous low-aspect-ratio channel will form (Fig. 14, stage 1b; Deptuck et al., 2003;
Hughes Clarke et al., 2013; Covault et al., 2014).

~Scale of outcrop
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" (Same in Part B)

Cuy. o .
B a.gwwa%_ Likely location for
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Figure 13. Autonomous underwater vehicle multibeam bathymetric data from Lucia Chica,
California. (A) Shaded relief image (4x vertical exaggeration) of the data set with main chan-
nel bodi bered in sequence by relative age and sequence of avulsion (modified from
Maier et al., 2013). The dashed line rectangle delineates the area of the perspective image
in B and the red dashed line indicates the approximate scale of the Tres Pasos Formation
outcrop at Arroyo Picana (same scale in B). This red line intersects various architectural ele-
ments in close proximity both laterally and vertically, similar to what is preserved at Arroyo
Picana. (B) Perspective image of multibeam bathymetric data; low-aspect-ratio channels,
high-aspect-ratio channels, scours, and linear trains of scours are present in this data set, at
roughly the scale of the outcrop at Arroyo Picana.
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The fills of numerous scours can be interpreted from the Arroyo Picana
outcrop, including numerous large-scale coalesced scours (unit B, Fig. 11).
The remnant of a scour beneath the high-aspect-ratio channel fill in lower
unit D (Fig. A, feature a) and the similarity in amalgamated sandstone
(FA1) in both the scour and overlying channel fill suggest that the scour
was eroded into the seafloor prior to subsequent formation of the through-
going channel.

High-Aspect-Ratio Channelform Architecture

High-aspect-ratio channelform bodies are considered to represent a sub-
sequent stage of turbidite channel evolution (Fig. 14; cf. Fildani et al., 2006,
2013; Maier et al., 2011, 2012). If flows are focused for long enough through
scour trains or bathymetric depressions, a low-relief channel (weakly confined)
is postulated to develop (represented by the high-aspect-ratio channelform
architecture of unit D). Often low-relief turbidite channels cannot keep entire

flows confined, and therefore the tendency is for them to breach confinement
and expand, often leaving behind deposits on the overbank or flank of the
channel (Maier et al., 2013; Stevenson et al., 2013). This type of channel can
be prone to avulsion, until a deeper channel is established (Maier et al., 2011,
2013; McHargue et al., 2011). If a deep low-aspect-ratio channel does not de-
velop, the weakly confined channels may be abandoned and left underfilled
by coarse sediment as a result of updip avulsion (Maier et al., 2011, 2012; Ste-
venson et al., 2013). The Lucia Chica channel system shows that the young-
est channels are broad (high-aspect-ratio) and either have no levees or have
low-relief levees; in addition, aligned flute-shaped erosional depressions are
observed in the bases of these features (Fig. 13; Maier et al., 2013; Fildani et al.,
2013). We propose that this results in a stratigraphic framework similar to that
preserved in units C and D at the Arroyo Picana outcrop (Fig. 11). Although
coeval lobe deposits are not exposed in the outcrop belt documented here,
similar shallow and broad channels are located immediately updip of lobes in
other outcrop belts (e.g., Karoo Basin; Prélat et al., 2009; Morris et al., 2014; Van
der Merwe et al., 2014).
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Low-Aspect-Ratio Channelform Architecture

The final stage in turbidite channel evolution is preserved by the low-
aspect-ratio continuous channelform architecture prominent in unit C (Figs.
7 and 14). This architectural element is described from outcrops (e.g., Mutti
and Normark, 1987; Beaubouef et al., 1999; Gardner et al., 2003; Campion
et al., 2005; Pyles et al., 2010; Macauley and Hubbard, 2013) and other data
sets (e.g., McHargue et al., 2011; Maier et al., 2012; Jobe et al., 2015). This style
of channel architecture was described from overlying units of the Tres Pasos
Formation (Hubbard et al., 2014), emphasizing evidence for innumerable tur-
bidity currents that passed through the channel over its lifespan, recorded in
fine-grained basal and marginal facies, as well as massive and amalgamated
sandstone fill. In Hubbard et al. (2014) evidence for sediment bypass, underfit
flows (i.e., flows smaller than their conduits), multiple phases of incision, and
collapsing turbidity currents from intrachannel fill observations was empha-
sized. The stratigraphy that overlies the Arroyo Picana outcrop (directly over-
lying unit D; Figs. 2B-2D) consists of ~330 m of dominantly low-aspect-ratio
channelform bodies (Hubbard et al., 2010, 2014; Macauley and Hubbard, 2013).

Stratigraphic and Geomorphologic Surfaces

Numerous large turbidity flows are considered to initiate and drive ero-
sion of slope channels (e.g., Elliott, 2000; Pirmez et al., 2000; Gee et al., 2007;
Hodgson et al., 2011; Fildani et al., 2013). Channel maintenance, including
mass wasting of channel margins, erosion, and sediment bypass, is preva-
lent throughout much of the channel lifecycle (Covault et al., 2014; Hubbard

et al., 2014; Stevenson et al., 2015). Overspill of sediment into channel-over-
bank areas results in levee construction, which contributes to confinement
of successive flows (Mutti and Normark, 1987; Flood et al., 1995; Kane and
Hodgson, 2011; McHargue et al., 2011; Maier et al., 2011). Phases of deposi-
tion in channels can be the result of insufficient flow energy, step drop in flow
velocity across a hydraulic jump, ponding in response to modification of the
equilibrium profile by emplacement of slumps, or decreased accommodation
downslope and subsequent backfilling (e.g., Mutti and Normark, 1987; Clark
and Pickering, 1996; Gardner and Borer, 2000; Postma et al., 2009; McHargue
et al., 2011; Covault et al., 2014). Through this multiphase history of channeliza-
tion, itis not surprising that channel fills are composite bodies bound by highly
diachronous stratigraphic surfaces (Fig. 15). This evolution invariably leads to
the generation of channelform-bounding stratigraphic surfaces that bear little
resemblance to formative geomorphic surfaces that existed on the seafloor
(Fig. 15; cf. Strong and Paola, 2008; DiCelma et al., 2011; Sylvester et al., 2011).

Despite the varied processes that contribute to the formation and filling of
channels, protracted and focused flows lead to a product that is generally per-
sistent and repeated globally (i.e., channel element fill of Mutti and Normark,
1987; Sullivan et al., 2000; Gardner et al., 2003; Pyles et al., 2010; McHargue
et al., 2011; Hubbard et al., 2014). Furthermore, the stratigraphic stacking of
successive channel elements can also be regular; for example, some channel
fills consistently stack aggradationally with limited lateral offset due to levee
or inner levee confinement and the disposition to being left underfilled upon
abandonment (cf. McHargue et al., 2011).

We speculate that settings in which confined to less-confined flow transi-
tions persist are associated with the elevated transfer of geomorphic surfaces
to the stratigraphic record (Figs. 14 and 15). Unlike channels that form through
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numerous stages of focused incision and filling over a protracted period, evi-
dence for this multistage history (e.g., intrachannel siltstone-draped scours,
thin-bedded margin deposits; cf. Hubbard et al., 2014) is not present in most
architectural elements of depositional zones where flow transitions occur (e.g.,
Figs. 8 and 9). A somewhat simpler, and abbreviated, history of erosion and
sediment bypass followed by rapid backfilling of sands and burial enhances
preservation potential of geomorphic surfaces. We speculate that transient
features and patterns observable on the modern seafloor are potentially pre-
served in the stratigraphic record, but only under certain conditions. For ex-
ample, regular avulsion of flow pathways in weakly confined to unconfined
settings results in bathymetric and depositional features that are not as prone
to cannibalization by subsequent deep incision and prolonged channel pro-
cesses (Wynn et al., 2002; Macdonald et al., 2011). In the case of the Tres Pasos
Formation, the high-aggradation net-depositional setting associated with the
progradational basin margin resulted in burial, which favored preservation of
the varied stratigraphic architecture, attributable to numerous stages of chan-
nel development (Fig. 14).

Repeated patterns of fill within and among sedimentary bodies have not
been well established in the analysis of strata attributed to zones of flow tran-
sition (e.g., Cazzola et al., 1981; Mutti et al., 1985; Wynn et al., 2002; Gardner
et al., 2003; Van der Merwe et al., 2014), in contrast to those of channel fills,
which stem from a prevalence of focused flows over sustained periods (e.g.,
Deptuck et al., 2007; Maier et al., 2011; Fildani et al., 2013; Hubbard et al., 2014).
The ephemeral nature, varied flow pathways, and limited erosion from subse-
quent channelization yield a more architecturally diverse and less predictable
stratigraphic expression of the response to decreasing confinement that has
historically been difficult to recognize, and therefore has been underreported.

B CONCLUSIONS

Although the stratigraphic expression of long-lived submarine channel
and lobe complexes are generally well established, the same cannot be said
for the stratigraphic expression of transition zones between these segments
of deep-sea sediment routing systems. The Cretaceous Tres Pasos Formation
that crops out at Arroyo Picana in the Magallanes Basin, southernmost Chile,
consists of varied architectural elements present in close association, includ-
ing: (1) low-aspect-ratio slope channel fills; (2) high-aspect-ratio weakly con-
fined channel fills; (3) lenticular, laterally amalgamated scour fills; (4) isolated
scour fills; and (5) cross-stratified, migrating depositional bedform deposits.
The strata are interpreted to contain the record of a decrease in channel con-
finement along the deep-water paleoslope.

Abundant evidence for scours and sediment bypass records a deep-water
sediment routing system segment characterized by decreasing confinement,
shifting flow pathways, and bathymetric irregularity. Unlike long-lived chan-
nel systems that tend to remain focused and thus cannibalize the record of
formative processes at the expense of later erosion and deposition events,
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shifting flow pathways in less-confined settings combined with burial driven
by high aggradation resulted in excellent preservation of sedimentary units.
The Tres Pasos Formation outcrop preserves a unique perspective of tur-
bidite channels at various stages of development, from early stage discon-
tinuous and isolated scour fills to low-aspect-ratio channel-fill units. The di-
verse sedimentary units transferred into the rock record result in less regular
stratigraphic patterns than those described from updip channel-dominated or
downdip lobe-dominated units; this has negatively affected their recognition
in other stratigraphic data sets.
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