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Earth-surface processes operate across erosionally dominated landscapes and deliver sediment to depositional
systems that can be preserved over a range of timescales. The geomorphic and stratigraphic products of
this source-to-sink sediment transfer record signals of external environmental forcings, as well as internal, or
autogenic, dynamics of the sedimentary system. Here, we evaluate environmental signal propagation across
sediment-routing systemswith emphasis on sediment supply, Qs, as the carrier of up-system forcings.We review
experimental, numerical, and natural examples of source-to-sink sediment routing and signal propagation
during three timescales: (1) historic, which includes measurement and monitoring of events and processes of
landscape change and deposition during decades to centuries; (2) centuries to several millions of years, referred
to as intermediate timescale; and (3) deep time. We discuss issues related to autogenic dynamics of sediment
transport, transient storage, and release that can introduce noise, lags, and/or completelymask signals of external
environmental forcings.We provide a set of conceptual and practical tools for evaluating sediment supplywithin
a source-to-sink context, which can inform interpretations of signals from the sedimentary record. These tools
include stratigraphic and sediment-routing system characterization, sediment budgets, geochronology, detrital
mineral analysis (e.g., thermochronology), comparative analog approaches, and modeling techniques to mea-
sure, calculate, or estimate the magnitude and frequency of external forcings compared to the characteristic re-
sponse time of the sediment-routing systems.
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1. Introduction

1.1. What is an ‘Environmental Signal’?

From the perspective of sedimentary system analysis, signals are
changes in sediment production, transport, or deposition that originate
fromperturbations of environmental variables such as precipitation, sea
level, rock uplift, subsidence, and human modifications. The origin of
the perturbations can be ‘natural’ when they relate to tectonic and cli-
matic processes that have happened over the course of Earth's history,
or ‘anthropogenic’ if they are linkedwith human actions. Environmental
signals occur over many temporal scales, ranging from several hours to
millions of years in response to tectonic and climate changes. Signals in-
volve a large range of spatial scales such as localized precipitation affect-
ing small catchments to eustatic sea-level change that affects the globe.

An environmental signal can trigger a response of the Earth's surface
in the form of erosion, sediment transport, and deposition, and the sur-
face response may be local initially and further afield eventually as it
propagates away. A sea-level fall, for example, can create local incision
and shoreline regression, but also up-system knickpoint migration and
down-system deposition in the deep sea. Similarly, an increase in
precipitation can create a wave of incision, alluvial aggradation, and
eventually a pulse of sediment discharge to the ocean. The overarching
challenge of geomorphology and stratigraphy is to invert the history of
environmental signals from landscape and rock records.

The transfer, or propagation, of signals is generally examined in
the down-system direction, as this is the dominant direction of
Fig. 1. (A) Schematic portrayal of a sediment supply (Qs) signal from the erosion zone and how t
the exit of the erosion zone and for simplicity is the same as the original forcing of interest. The
erosion zone and the rightmost signal represents that which reaches the accumulation zone a
segment(s) to illustrate that a signal can be modified during propagation. (B) 2-D profile of a
(potential for intermediate to deep time stratigraphic preservation in yellow) and important co
thropogenic factors.
Part B modified from Castelltort and Van Den Driessche (2003).
mass transfer (e.g., Castelltort and Van Den Driessche, 2003; Allen,
2008a; Jerolmack and Paola, 2010). However, up-system signal
propagation driven by base level change has long been considered
in the interpretation of the sedimentary record (e.g., Fisk, 1944), is
important for distributive systems (e.g., backwater effect in deltas,
Lamb et al., 2012), and is the subject of theoretical work (Voller
et al., 2012).

Environmental signals are potentially preserved in the geomorphic
expression of landscapes around us, as well as in the stratigraphic
record of depositional basins. This review examines how signals propa-
gate within the context of sediment‐routing systems with emphasis on
the nature of sediment supply, or Qs, as the indicator of up-system forc-
ings (Fig. 1A) (Allen et al., 2013).We think that reconstructing the rates
and magnitudes of signal-generating processes from stratigraphy re-
quires consideration of the nature of system response, and the potential
modification of the original signal. It is also important to recognize that
signals can bemasked or significantly altered bywhat can be referred to
as ‘noise.’ In the present context, ‘noise’ has the broad meaning of any
modification of the primary signal of interest, irrespective of its origin,
frequency, or magnitude. It is one fundamental goal of stratigraphy to
disentangle signal from noise, but what can be considered noise at one
timescale may represent a signal at another. One notable type of noise
is the result of internal, self-organized, dynamics of a sediment‐routing
system (e.g., Jerolmack and Paola, 2010), that can potentially ‘shred’
environmental signals as a result of their large magnitude and period
relative to the primary signal of interest (e.g., Jerolmack and Paola,
2010; Wang et al., 2011).
hat signal propagates through the system. The leftmostQs signal represents asmeasured at
transfer zone Qs signal is measured within the transfer zone at some distance from exit of
nd is an input for the stratigraphic record. Dashed lines refer to Qs signal(s) in up-system
generic sediment-routing system emphasizing erosion, transfer, and accumulation zones
ntrols of tectonics (including earthquakes), climate (including storms), base level, and an-
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Deciphering signals has obvious implications for the meaning of the
sedimentary record of Earth history: what do sediments and rocks tell
us about the past? However, understanding the signal-to-noise charac-
ter of the sedimentary record is also relevant to the prediction of land-
to-sea export and burial of terrestrial organic carbon (e.g., Kao et al.,
2014; Leithold et al., 2016–in this volume), landscape resiliency and
hazard management (e.g., Anthony and Julian, 1999), prediction of de-
positional systems for natural resource exploration and production
(Bhattacharya et al., 2016–in this volume), and response of hydrological
systems to global climate change (e.g., Syvitski, 2003). We do not at-
tempt to solve all the outstanding issues related to signal propagation
and preservation in this contribution. Our goal is to provide the general
Earth scientist a thorough review of the interesting and enigmatic ques-
tions and to promote a broader understanding that might attract other
researchers to this multidisciplinary field of study.
1.2. Importance of timescale of investigation

We emphasize the importance of timescale in this review be-
cause of its association with the processes of signal generation,
propagation, preservation, and analysis. The evaluation of signals
requires consideration of the timescale(s) particularly in the con-
text of internally generated ‘noise.’ Also, some signals occur over
long durations (e.g., uplift and exhumation of a mountain belt)
and, therefore, require a correspondingly long record from which
to deduce the signal.

How do we put historical (past few centuries) measurements
and observations within the framework of landscapes and stratigra-
phy constructed over timescales ≥103 yr? Put another way, how do
we accurately estimate short-term rates from geologic archives that
have longer-term temporal resolution? For example, the less than
centennial stratigraphic record contains information about short-
lived events, such as hurricane deposits, which can be reliably
dated. The challenge is to extract meaningful insight from such re-
cords in the deeper past.

We organize this review of signal propagation and preservation
within the context of three important timescales that span a minimum
of seven orders of temporal magnitude: (1) historic, which includes
measurement and monitoring of events and processes of landscape
change (b102 yr); (2) centennial to millions of years, herein referred
to as the intermediate timescale (102–106 yr); and (3) deep time
(≥107 yr) (Fig. 2). These timescales are discussed in terms of age of
the system as well as duration or period of forcing. The timescale of in-
vestigation also influences the application of concepts of steady state,
response time, and other system dynamics indicators, which will be
discussed in detail in the intermediate timescale Section 3.
Fig. 2. Overview of three timescales of investigation, some of the chronometric tools with whic
Dashed lines at the top emphasize the continuum among the timescales. Temporal range of ‘oro
Walker (2005).
1.3. Sediment routing systems

Earth-surface processes operate within erosionally dominated land-
scapes coupled with depositional systems that can be preserved over a
range of timescales. A simple and elegant way to consider an integrated
sedimentary system was presented by Schumm (1977), wherein he
subdivided a system into three spatial zones of dominant mass-flux be-
havior: denudation/erosion, transfer, and accumulation/deposition.
Similar to Castelltort and Van Den Driessche (2003) and Sadler and
Jerolmack (2015), we depict a generic sediment‐routing system in
cross section and denote theprominent environmental forcings of inter-
est in this review (Fig. 1B). The ‘transfer zone’ is assumed to be the seg-
ment of the sedimentary system that is neither net-denudational nor
net-accumulative; rather, it is characterized by the balance between
sediment removal/remobilization and sediment storage that feeds or
starves down-system accumulation zones. Thus, this zone typically
does not produce much sediment via bedrock erosion and, over suffi-
ciently long timescales, it will transfermoremass than it produces or ac-
cumulates. We consider the morphology and process history of the
transfer zone as an indicator of system response to perturbations,
which is important for reconstructing paleosediment‐routing systems.
A spatial scale is not shown on Fig. 1B because the lengths of these
zones vary significantly from system to system (e.g., Sømme et al.,
2009). For example, small/high-relief sediment‐routing systems
(10–50 km long) typically have very short transfer zones, which results
in negligible transient sediment storage, whereas large, continental-
scale systems (100–1000 km long) commonly have long transfer
zones containing sediment sinks that can store sediment temporarily
or permanently given favorable subsidence conditions. The magnitudes
and timescales of such mass transfer-and-storage behavior, which can
be addressed through the estimation of sediment budgets, are funda-
mental to the propagation of signals. We focus on the down-system
mass transfer of inorganic, dominantly siliciclastic, particulates through
water-sediment flows and refer the reader to Leithold et al. (2016–in
this volume) for a review of organic-carbon dynamics of source-to-
sink systems. Additionally, we acknowledge the important and unique
sediment-supply characteristics of glaciated systems but do not distin-
guish them here and refer the reader to Jaeger and Koppes (2016–in
this volume).
2. Sedimentary process-response over historical (b102 yr) timescales

Signals at the historical timescale are the result of individual events
that last hours to days (e.g., floods, storms, and earthquakes) to longer-
lived changes that occur over decades (e.g., watershed deforestation
and other land-use alterations) (Fig. 1). The mechanisms involved in
h to constrain process rates, and periods of some of the forcings discussed in this review.
genic cycles’ fromDeCelles et al. (2009). Effective dating range of chronometric tools from
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the formation and/or propagation of such signals from source to sink in-
clude a range of hillslope (e.g., sheetwash, landsliding), glacial, fluvial,
volcanic, oceanic (e.g., tides and stormwave) processes and subaqueous
mass flows (e.g., turbidity currents). Data from instruments have pro-
vided opportunities to measure and quantify sedimentary dynamics,
and the stratigraphic record is also examined to link process to product
over longer timescales. The timescale of this section covers what some
consider to be the period of significant anthropogenic influence on
Earth surface systems (onset of the Industrial Revolution, or ~250 yr be-
fore present; Crutzen and Stoermer, 2000; Zalasiewicz et al., 2008).

We identify four potential challenges to leveraging historic re-
cords to understand millennial-scale and deeper-time geology.
First, ancient events might have been non-actualistic; i.e., there is
no adequate modern analog regarding process (Myrow and
Southard, 1996). For example, globally distributed strata that were
produced by the end-Cretaceous bolide impact (e.g., Bralower
et al., 1998). Second, although a recent event may have had profound
impact on society (e.g., 2005 Hurricane Katrina, 2011 Mississippi
River flood), the geological record produced might be negligible or
non-existent, depending on many factors including spatial variation
in supply and erosion (Turner et al., 2006; Walsh et al., 2006; Goni
et al., 2007; McKee and Cherry, 2009; Reed et al., 2009; Allison
et al., 2010; Falcini et al., 2012; Kolker et al., 2014; Xu et al.,
2014b). Third, the observation of modern sedimentary processes
shows that strata are often destroyed within years after deposition as
a result of physical and/or biogenic reworking (Wheatcroft et al.,
2007; and references therein). Finally, there is the problemof discontin-
uous sedimentation and the likelihood of larger gaps in the record
(i.e., time recorded as hiatus) as the time interval of sampling increases
(Sadler, 1981; Sadler and Jerolmack, 2015), whichwill be discussed fur-
ther in Section 4.

Erosional landforms provide a rich record of signals in the annual-to-
centennial temporal range (e.g., Viles and Goudie, 2003), but the prima-
ry goal of our discussion is to understand signal propagation into the
sedimentary record. Many studies at historical timescales are focused
on specific processes and segments (e.g., hillslope erosion, shelf sedi-
mentation) and do not strive to directly link source and sink through
contemporaneous research. Moreover, simple relationships between
event size (e.g., flood magnitude) and strata thickness may be the
exception rather than the norm (Corbett et al., 2014; and references
therein). As a result, the source-to-sink stratigraphic connection
remains a challenge in many studies despite a wealth of data.

At the shortest end of the signal transfer spectrum (b1 yr), the
potential for direct communication of a sediment supply signal to a
sink is greatly limited. To produce a measurable signal in the strati-
graphic record of the sink, events that drive sediment redistribution
must move a relatively large volume of material over a short time. To
understand modern system behavior, we recommend consideration of
the source signal relative to the sink size; e.g., volume of event-scale
Qs versus volume capacity of a sink. Furthermore, system size can im-
pact the timescale of the signal. For example, a flood or earthquake-
driven landslide into a confined mountain lake can be captured quickly
(hours to days) and potentially with little post-depositional physical
and/or biogenic modification (Schillereff et al., 2014) compared to a
flood of the vast Mississippi River catchment into the Gulf of Mexico,
the effects of which can persist for months (Allison et al., 2000; Kolker
et al., 2014; Xu et al., 2014b). Resolving events occurring in close succes-
sion is challenging because the signals might be truncated, overprinted,
or commingled (e.g., hurricanes Katrina and Rita; Goni et al., 2007; or
the Morokot earthquake and ensuing flood; Carter et al., 2012).

We first discuss key processes and rates of sediment production and
transfer over human timescales. We then address the storage in
sedimentary sinks and high-resolution dating typical of historical time-
scales. Finally, we examine two well-studied modern source-to-sink
systems and the specificities of stratal preservation and sediment
budgets over centennial timescales.
2.1. Sediment production and transfer over historical timescales

Sediment production and movement in catchments and river
systems is often described in a time-averaged perspective with the
timescale of focus related to the measurement tool employed. Annual
hillslope erosion rates (in mm/yr or t/ha/yr), sediment loads (t/yr)
and yields (t/km2/yr) may be used to compare and contrast systems
and help evaluate their overall functioning (Milliman and Syvitski,
1992; Walling and Webb, 1996; Walling, 1999; Syvitski and Milliman,
2007; Syvitski and Saito, 2007; Milliman and Farnsworth;, 2011;
Covault et al., 2013). Loads and yields are commonly measured with
stream gauges (e.g., Milliman and Farnsworth, 2011), which can be
used to evaluate catchment erosion rates and/or alluvial storage
(e.g., Meade et al., 1990; Walling and Collins, 2008). There are signifi-
cant challenges to quantifying sediment transfer to the sea by rivers,
particularly of large systems because of tidal influence on transport
calculations and sediment storage in the lower river (e.g., Milliman
et al., 1984; Allison et al., 2012). Historical measurements can be biased
as a result of their limited duration or influences of anthropogenic
catchment modification, including construction of dams and other
land-use activities associatedwith agriculture, construction, andmining
(Wilkinson and McElroy, 2007; Milliman and Farnsworth, 2011).
Erosion rates also can bemeasured with cosmogenically derived tracers
(e.g., 10Be; discussed further in Section 3) and radiochemically dated
deposits (e.g., 14C, 137Cs or 210Pb) from well-defined source areas
(e.g., Walling and Collins, 2008). Technological advancements, specifi-
cally Light-Detection and Ranging and terrestrial laser scanners, have
improved our ability to quantify morphological changes on land.
Denudation rates from LiDAR, discharge measurements and 10Be
indicate variability depending on slope and other factors (commonly
b0.5 mm/yr, but locally N3 mm/yr) (e.g., Hovius et al., 1997; Aalto
et al., 2003; Roering et al., 2007; Korup et al., 2014). The contextual
and temporal knowledge of precipitation and catchment characteristics
usually exceedswhat can bemeasured or inferred in ancient systems, as
will be discussed in subsequent sections.

Water-driven transport, especially during intense floods, can
generate recognizable sedimentary signals in sink areas. Intense rainfall
and associated floods can rapidly (hours to days) move large volumes
(N5 Mt [million metric tons]) of sediment through small (b5,000 km2)
catchments to offshore depositional areas (e.g., Sommerfield et al.,
1999; Hale et al., 2014; Kniskern et al., 2014), and larger catchments
(N50,000 km2) can generate appreciable sediment supply (N10s Mt)
signals to the sea over the course of days to weeks (e.g., Palinkas et al.,
2005; Kolker et al., 2014). Subaerial and submarine landsliding and
other mass movements are related to pre-conditioning factors, such as
hillslope soil or rock strength, geomorphology, and short-term
conditions (e.g., earthquake and hydrology) (Dietrich et al., 1995;
Roering et al., 2007; Strasser et al., 2006; Goldfinger et al., 2012; and
references therein).

An earthquake can disturb a catchment by increasing pore pressures
and liquefying substrate, among other processes of manipulating
gravitational loads on slopes, which can lead to abrupt increases in
sediment loads (e.g., Dadson et al., 2004). Also, earthquake-triggered
mass wasting can create conspicuous stratigraphic records in lakes
and the deep sea (e.g., Heezen and Ewing, 1952; Piper and Aksu,
1987; Moernaut et al., 2007). Much research has explored coastal
and marine sedimentary records to evaluate the recurrence intervals for
earthquakes and associated tsunamis (e.g., Atwater and Hemphill-Haley,
1997; Goldfinger et al., 2003, 2012; Strasser et al., 2006; Moernaut et al.,
2007; Barnes et al., 2013), including some recent detailed research fo-
cused on the Sumatra and Tomoko events (e.g., Szczucinski et al., 2012;
Patton et al., 2013). There is still vigorous debate regarding deep-sea
turbidites as reliable paleo-seismometers (e.g., Sumner et al., 2013;
Atwater et al., 2014).

Over annual to centennial timescales, anthropogenic activities, such
as deforestation and pollution, can create signals that become stored in
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sedimentary sinks (e.g., Paull et al., 2002; Cundy et al., 2003). Many nat-
ural and human factors (e.g., land use, dams) have significant influence
on sediment yields and loads (Meade et al., 1990; Syvitski et al., 2005;
Milliman and Farnsworth, 2011). As a consequence of the potential
influence of human activities, Syvitski and Milliman (2007) included
an anthropogenic factor in their BQART model that predicts global sed-
iment delivery to the oceans. Although intra-system storagemight buff-
er some signals (i.e., low sediment delivery ratios; Phillips, 1991;
Walling and Collins, 2008), catchment changes can notably increase
Qs. Damming and leveeing can significantly diminish sediment supply
into sink areas (Syvitski et al., 2005; Milliman and Farnsworth, 2011;
and references therein), not only precluding new strata development
but also yielding land loss in some areas (e.g., Smith and Abdel-Kader,
1988; Day et al., 2007).

2.2. Storage in sedimentary sinks over historical timescales

To evaluate the presence of signals, including events, in stratigraphic
records over historic timescales, 210Pb and 137Cs are commonly used
to date deposits or determine sediment accumulation rates (Fig. 2)
(e.g., Sommerfield and Nittrouer, 1999). Bathymetric and sub-bottom
observations (i.e., seismic reflections) have revealed the geomorphic
and stratigraphic complexity of subaqueous environments and such
data are helpful to strategically position coring sites to obtain desired
records (e.g., Goldfinger et al., 2012) or to inform spatial variability for
determining sediment budgets (e.g., Gerber et al., 2010; Miller and
Kuehl, 2010). Recent studies have shown how time-series bathymetric
analysis with multibeam may yield new insight into the intermittent
nature of fluvial deposition (Nittrouer et al., 2008) and subaqueous sed-
iment density flows (e.g., Smith et al., 2005;Walsh et al., 2006; Xu et al.,
2008; Hughes Clarke et al., 2012). Additionally, researchers are using in-
novative methods to track sediment transport and deposition, such as
short-lived radiochemical tracers (i.e., 7Be) for catchment and seaward
sediment dispersal (e.g., Sommerfield et al., 1999; Dail et al., 2007;
Walling, 2013), andmounted acoustic- and light-based sensors for mea-
suringwater and sedimentmovement (e.g., Xu et al., 2004; Dinehart and
Burau, 2005; Cacchione et al., 2006). Deployed systems have provided
flow measurements (i.e., velocity and sediment concentrations), which
are essential to modeling sediment transport (e.g., Traykovski et al.,
2007;Moriarty et al., 2014). However, fieldmeasurements remain limit-
ed especially during extreme and/or rare events when most sediment is
moved (e.g., Ogston et al., 2000; Talling et al., 2013; Hale et al., 2014;
Stevens et al., 2014; Xu et al., 2014a).

Sedimentary filling of hollows, ponds, lakes, floodplains, estuaries,
and even sinkholes can provide information about individual events
or decadal-to-centennial changes in the environment. Evidence for up-
stream changes includes increased sedimentation rates elevated trace
metals, variations in pollen, microfossil organisms and/or assemblages,
trace metals, and organic compounds (e.g., estuaries; Brush, 2001;
Cooper et al., 2004; lakes; Noren et al., 2002; Girardclos et al., 2007;
floodplains; Aalto et al., 2003; coastal deposits; Sorrel et al., 2012;
Lane et al., 2011; shelves; Allison et al., 2012; deep sea; Soutar and
Crill, 1977). Gilli et al. (2013) and Schillereff et al. (2014) provide
reviews of flooding and climate changes from lake records.

Continental shelves, slopes, and deeper ocean segments are typically
viewed as the ultimate depositional sinks, but their records are variably
preserved as a result of post-depositional reworking and can be
challenging to unravel (Nittrouer et al., 2007). Theory and modeling
emphasize that event-layer preservation is a function of the rate of
bioturbation, mixing depth, and layer thickness (Wheatcroft et al.,
2007; and references therein). However, time-series coring studies of
flood-related deposition on continental shelves offshore the Eel, Po,
and Waipaoa sediment-routing systems have shown deep (N5 cm)
biological reworking over the span of a few years (Wheatcroft et al.,
2007; Tesi et al., 2012;Walsh et al., 2014). Areas of rapid sedimentation
and physically reworked areas such as topset and foreset regions of
clinoforms might have physical stratification preserved at depth,
e.g., Amazon delta front (Kuehl et al., 1996; Sommerfield et al., 1999;
Walsh et al., 2004; Rose and Kuehl, 2010). However, the presence of
discontinuous, heterolithic bedforms can preclude recognition of
event-specific beds (Goff et al., 2002; Walsh et al., 2014). Ocean areas
with low or no dissolved oxygen inhospitable to benthic organisms
(e.g., Soutar and Crill, 1977) are favorable for signal preservation
(Allison et al., 2012). Continental margins and basin-margin deep-sea
fans capture event records beyond historical timescales. However, dur-
ing the sea-level highstand of the past several thousand years, off-shelf
sediment transport is reduced in some settings (Posamentier and Vail,
1988; Covault andGraham, 2010),with shelfwidth serving as an impor-
tant control (Posamentier et al., 1991; Walsh and Nittrouer, 2003;
Covault and Fildani, 2014). As a result, limited sediment supply to
some deep-sea fans has resulted in condensed sections recording few
if any events at historical timescales.

2.3. Modern sediment routing system examples

To further discuss historical (b102 yr) signal propagation, two differ-
ently sized sediment‐routing systems will be briefly discussed: the Eel
River and the Ganges–Brahmaputra–Bengal system. The Eel is a small
mountainous river system (b103 km2) draining northern California,
USA, that has received intense scrutiny during and since the Office of
Naval Research STRATA FORmation onMargins program (STRATAFORM;
1995–2004; Nittrouer et al., 2007). Small mountainous rivers are impor-
tant for understanding sediment flux to the sea because of the minimal
onshore sediment storage (Milliman and Syvitski, 1992; Kuehl et al.,
2003; Covault et al., 2011). We contrast this work with the much larger
Ganges–Brahmaputra–Bengal sediment-routing system, where abun-
dant sediment is stored onshore, on the shelf, and in the canyon today
(Kuehl et al., 2005;Walsh et al., 2013). Collectively, large systems provid-
ed potentially a third to a half of the sediment to the sea prior to human
alterations (Milliman and Farnsworth, 2011; Walsh et al., 2013).

The Eel River is one of the most comprehensively studied modern
sediment‐routing system over the historical timescale (b500 yr). Its
9,400 km2 catchment in a tectonically active setting of outcropping
sedimentary rocks is estimated to discharge ~12–16 Mt of sediment to
the sea annually (Sommerfield and Nittrouer, 1999, 2014; Warrick,
2014) (Fig. 3). Landslides are common in steep portions of the
catchment (de la Fuente et al., 2006), but almost 70% of the load
comes from the central portion of the catchment where mélange out-
crops are more erodible (Brown and Ritter, 1971). The largest recorded
flood event occurred in December 1964, a year during which the Eel
River is estimated to have discharged more than 160 Mt of sediment
(Warrick, 2014). This is N13 times the annual average, with most
discharge occurring over a few days. In 1995 (January and March) and
1997 (January), three floods occurred, and STRATAFORM scientists
documented the deposition of a widespread layer on the shelf
(Fig. 3) (Wheatcroft et al., 1997; Sommerfield and Nittrouer, 1999;
Wheatcroft and Borgeld, 2000). The remarkable similarity between
the flood deposits and decadal shelf sedimentation patterns demon-
strate how important these events are to shelf construction. However,
event and decadal sediment budgets indicate most (N50%) of the
sediment is exported beyond the shelf (Fig. 3) giving testimony to the
effective transport conditions associated with coherent discharge and
energetic ocean conditions (Wheatcroft and Borgeld, 2000).

Instrument observations made in winter 1996–1997 revealed that a
wave-enhanced sediment gravity flow associated with the floods
transported an appreciable amount of sediment to the mid-shelf, ex-
ceeding other measured events by two orders of magnitude (Ogston
et al., 2000; Traykovski et al., 2000). The widespread and distinctive
shelf flood deposit is attributed to this mechanism; however,
subsequent examination of the same deposit two years later indicated
extensive reworking by physical and biological processes (Wheatcroft
et al., 2007; and references therein). Although some shelf core records



Fig. 3. (A) Topography and drainage network of Eel and Mad river catchments, northern California, and bathymetry of the continental margin. Red star denotes location of shelf core
x-radiograph shown in (B). (B) X-ray image of shelf sediment reflects bulk density. Light colors (lower bulk density) interpreted as 1995 flood deposit (Sommerfield and Nittrouer,
1999; Wheatcroft and Borgeld, 2000). (C) Map of Eel-Mad sediment-routing system showing catchment area, areal extent of coastal floodplain, and shelf depocenter (yellow). Red
star denotes location of shelf core image shown in (B). (D) Historical timescale sediment budget of the Eel-Mad sediment-routing system showing: 1) there is negligible onshore storage,
2) the shelf stores ~30–50% of the budget, and 3) the remainder moves to the canyon and continental slope.
Budget estimations from Sommerfield and Nittrouer (1999) and Warrick (2014).
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have stratigraphic and organic carbon evidence suggestive of older
events (e.g., 1964 flood) (Sommerfield et al., 1999; Leithold et al.,
2005), the documentation of post-event reworking indicates that the
Eel shelf does not contain a laterally extensive or high-fidelity record
of flood signals (Goff et al., 2002;Wheatcroft et al., 2007; and references
therein).

Subsequent coring and tripod research in the Eel Canyon document-
ed the possibility of more direct sediment gravity flow to deeper water.
Resuspension and transport of sediment via waves also were found to
have an important control on this off-shelf export (Puig et al., 2003).
Cores from the canyon indicate sedimentation is spatially and temporal
complex, although export to deeper water is apparent (Mullenbach
et al., 2004; Drexler et al., 2006; Mullenbach and Nittrouer, 2006).
Nepheloid layers also transport fluvial sediment seaward of the Eel
River mouth, allowing hemipelagic sedimentation to accumulate
on the slope, but this modest input is easily reworked by the active
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benthic community precluding event layer formation (Alexander and
Simoneau, 1999;Walsh andNittrouer, 1999). These studies demonstrate
that unraveling signals from Eel margin stratigraphic records is not
straightforward, which is a similar story for the Waipaoa River of New
Zealand (Kuehl et al., 2016–in this volume). The apportionment of terrig-
enous sediment among shelf, slope, and deep-sea segments (Fig. 3D)
suggests that shelf records might contain signals of sediment-
production events that originated in the catchment, but post-
depositional homogenization hampers event-scale determination.

The Ganges–Brahmaputra–Bengal is a large (1,656,000 km2 catch-
ment) sediment-routing system fed by tectonically active mountains.
Sedimentation on the Bengal Fan (N2,000,000 km2 depositional area),
the ultimate sink for the system, has varied significantly since the
Mesozoic because of plate tectonics (i.e., rifting and then collision in the
Eocene) and associated sediment production (Curray, 2014; and refer-
ences therein). Despite onshore foreland-basin accommodation created
by ongoing collisional tectonics, sediments are moving through most of
the system over historical timescales, from the Himalayas (N5,000 m
elevation) to the Bengal Fan (N4,000 m water depth) (Fig. 4; Kuehl
et al., 2005). Sediment production in theGanges–Brahmaputra catchment
(including the Meghna River) corresponds to an average catchment
Fig. 4. (A) Topography and drainage network of Ganges, Brahmaputra, and Meghna rivers an
submarine fan system. Red star denotes location of core record shown in (B). (B) Core from u
from eastern Bengal shelf. Data is from core 96 KL as reported in Michels et al. (2003). (C) Ma
large delta plain area, shelf depocenter (yellow) and the Bengal submarine channel-levee system
budget of Ganges–Brahmaputra–Bengal sediment-routing system showing that almost one-thir
between the topset and foreset regions, and the remaining ~30% is delivered to the canyon an
Budget estimations from Kuehl et al. (2005) and references therein.
denudation rate of 365mm/kyr,which is over anorder ofmagnitude larg-
er than the global average of 30mm/kyr (Islamet al., 1999). The sediment
load for the integrated catchment is ~1,000 Mt/yr, which equates to a
system sediment yield of ~550 t/km2/yr. However, sediment yield varies
significantly spatially across the catchment. For example, the Brahmapu-
tra River yield is N140% that of the Ganges (Summerfield and Hulton,
1994; Islam et al., 1999), and most of the Brahmaputra sediment
is sourced from a smaller portion of the catchment, the High Himalayas
(Wasson, 2003).

Gauging stations for rivers are located about 300 km from the coast,
and studies indicate ~30% of the sediment is stored landward of the
coastline (Fig. 4) (Goodbred and Kuehl, 1999). Sediment sinks include
levee, floodplain, and river-bed aggradation, and alluvial accumulation
in tectonically subsiding areas (Allison, 1998; Goodbred and Kuehl,
1998). Longer timescale records show that since the middle Holocene
(~7 ka) slowdown in sea-level rise, some locations have accumulated
N20 m of sediment (Goodbred and Kuehl, 1998), and rates of filling
since ~12 ka suggest significant climate forcing on sediment supply
(Goodbred and Kuehl, 2000a). Over historical timescales, floodplain
areas of the upper delta plain have linear sediment accumulation rates
that generally decrease with distance from the river channel
d bathymetry of shelf, Swatch of No Ground submarine canyon, and part of the Bengal
pper canyon showing variation in mean grain size with time compared to storm record
p of Ganges–Brahmaputra–Bengal sediment-routing system showing catchment area, the
. Red star denotes location of core record shown in (B). (D) Historical timescale sediment

d of the budget is stored on the delta plain, ~40% accumulates in the shelf depocenter, split
d Bengal submarine fan.
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(e.g., from 4 cm/yr to b1 cm/yr, Allison, 1998). Sediment dynamics in
the lower delta plain are influenced by processes that originate in the
marine realm such as sea-level rise, waves, tides, and cyclones (Allison
and Kepple, 2001; Hanebuth et al., 2013). Shoreline areas show a com-
plex pattern of erosion and accretion (Allison, 1998; Shearman et al.,
2013), but radiochemical analyses indicate sediment accumulation gen-
erally decreaseswith distance from the coast, reflecting import offluvial
sediment (Allison and Kepple, 2001).

Seismic-reflection profiling has established the presence of a siz-
able subaqueous delta clinoform on the shelf (Kuehl et al., 1997;
Michels et al., 1998). Bathymetric and shoreline changes indicate
that ~20% of the fluvial load is building the topset of the clinoform
(Fig. 4) (Allison, 1998). Based on core and seismic-reflection data,
the foreset region of the clinoform sequesters another 20–31% over
historical timescales (Fig. 4) (Michels et al., 1998; Suckow et al.,
2001). Transparent layers visible in seismic‐reflection profiles of
the clinoform have been suggested to represent mass flows triggered
by earthquakes (Michels et al., 1998). As a result of westward along-
shelf currents reworking the delta front, sediment is at present being
advected into the head of the Swatch of No Ground submarine can-
yon and episodically to the Bengal submarine fan (Kuehl et al.,
1997, 2005). Weber et al. (1997) showed that late Holocene sedi-
mentation occurred on the channel-levee complex (on the middle
fan, ~500 km seaward of the shelf), but at a reduced rate compared
to latest Pleistocene to early Holocene. Cyclones are hypothesized
to be responsible for stratigraphic layering visible on the shelf and
in the upper canyon (Fig. 4) (Kudrass et al., 1998; Suckow et al.,
2001; Michels et al., 2003). Cyclones also serve as a possible trigger
mechanism for episodic mass wasting events (Rogers and
Goodbred, 2010). Canyon sedimentation and down-canyon trans-
port, including evidence for turbidite deposition on the Bengal Fan,
are hypothesized to account for ~30% of the fluvial load over histor-
ical timescales (Fig. 4) (Goodbred and Kuehl, 1999; Kuehl et al.,
2005). A terrestrial erosion-zone signal is being driven down this
system, but it has been and continues to be significantly modulated
by other processes (e.g., cyclones) along the way. As a result, alluvial
storage areas might be the best sites for extracting forcings from
source areas over the historical timescale.

Research on the Ganges–Brahmaputra–Bengal and Eel systems
highlights how historic stratigraphic records, accumulation rates,
and sediment budgets can inform system functioning and source-
to-sink transfer. This work also demonstrates that, although histori-
cal timescale records may be data rich and highly temporally re-
solved relative to intermediate and deep-time records, evaluation
of sediment supply signals generated in upland catchments can be
difficult. A more detailed and quantitative documentation of pro-
cesses, rates, and spatial distribution of sedimentation does not nec-
essarily equate to a better understanding of linkages between system
segments. Better preserved and potentially more complete records
in proximal storage areas, such as lakes, might allow more detailed
records to be captured up system, but the localized nature might
not reflect broader system functioning (e.g., Orpin et al., 2010). Com-
bining observations from multiple localities will be essential to de-
fining robust regional or global signals (e.g., Noren et al., 2002).
Other insights about catchment sediment production can be provid-
ed from the geomorphic record of erosional landforms. The sedimen-
tary signature of events, such as floods, earthquakes, and storms, is
likely more easily relatable to its forcing if process and response
occur within the same or immediately adjacent segment(s) of the
sediment-routing system (e.g., coastal overwash fan deposits from
landfalling hurricanes; Boldt et al., 2010). The variability in sediment
transport and associated deposits generated at b102 yr timescales is
commonly considered noise over longer timescales as a consequence
of combining event-scale and ‘background’ sedimentation into a
time-averaged rate. However, the findings from historical timescale
studies show that there are signals embedded within the noise.
3. Sediment routing at intermediate (102–106 yr) timescales

The timescale from just beyond historical (several centuries before
present; discussed above) to several millions of years is a critical
temporal range in Earth surface dynamics because fundamental climate
forcings (i.e., Milankovitch cycles) that control the global climate are
prominent over this timescale (Hays et al., 1976). Sustained rates of
rock uplift and deformation in tectonically active areas lead to exhuma-
tion, sediment production, and morphological change at ≥105 yr time-
scales (Burbank and Anderson, 2011). Moreover, it is in this temporal
range during which sedimentary deposits can be sufficiently buried to
become rock and preserved in the stratigraphic record — durations
often referred to as ‘geological timescales’ (e.g., Allen et al., 2013).

We first discuss sedimentary system dynamics and associated signal
implications based on numerical and physical models. Unlike the
short-term timescales during which an integration of direct observa-
tion, monitoring, and modeling informs our understanding of source-
to-sink signal propagation, modeling and theory become even more
critical for intermediate (102–106 yr) timescales. Examples of recent
work on paleo-sediment budgets for sediment-routing systems are
also discussed.

3.1. Model predictions of intermediate timescale signal propagation

We review how tectonic or climatic signalswith periods of 102–106 yr
are propagated through different portions of the sediment‐routing
system (Fig. 2). We emphasize sediment supply (Qs) as the principal
vector for environmental signal propagation and aim to provide a review
on the current state of knowledge with respect to the following impor-
tant questions: (1) Does the erosion zone produce sediment supply sig-
nals in response to climate and tectonic perturbations with periods able
to generate stratigraphic patterns? (2) Does the transfer zone faithfully
transmit signals to the sedimentary basin, or does it modify signals
coming from the erosion zone?

Signal transfer through a system depends on whether its period is
smaller or larger than the response time of the system (Paola et al.,
1992; see alsoAllen, 1974).Moreover, the action of internal, or autogen-
ic, dynamics in any or all of themass-flux zones can influence Qs behav-
ior, which affects signal propagation. We first define and review
knowledge of response times for the erosion zone of hillslopes and bed-
rock channels, then focus on the transfer zoneofmixed alluvial andbed-
rock channels to alluvial channelswithfloodplains, and its linkage to the
accumulation zone in sedimentary basins (Fig. 1).

3.1.1. Qs signal generation and propagation in the erosion zone
It is beyond our scope to present a comprehensive review of investi-

gations into how climate and/or tectonic forcings are recorded in net-
erosional landscapes (e.g., Burbank and Anderson, 2011; and references
therein). Rather, we emphasize the propagation of those perturbations
out of the erosion zone in the form of sediment supply. The concept of
steady state as applied to landscape evolution (e.g., Willett and
Brandon, 2002) refers to a state in which Earth's surface elevation
relative to a datum is broadly constant as a result of a balance between
rock uplift and erosion. Thus, the rate of sediment supply out of an area
in steady state is, in the simplest case, also constant when averaged be-
yond timescales of individual events. A perturbation in the form of
varying rates of tectonic movement or precipitation induces a response
of the landscape system in the formof varying rates of sediment produc-
tion. A characteristic equilibrium, or response, time for the system is the
time that it takes for this transient landscape to respond to this pertur-
bation and then return to a steady state (Beaumont et al., 2000) (Fig. 5).
Allen (2008b) termed landscapes that have a response time shorter
than the repeat time of the perturbation as ‘reactive’ and those with
response times longer than perturbation repeat time as ‘buffered’
landscapes. This equilibrium time is critical to the discussion of signal
propagation because it is the variability of Qs out of the erosion zone
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Fig. 5. The ratio between the timescale of a perturbation (Tp) and the characteristic equi-
librium, or response, time (Teq) of a sediment-routing system (after Beaumont et al., 2000;
see also Allen, 2008b). A forcing of water discharge (Qw) and a response of sediment sup-
ply (Qs) are shown for (A) a reactive response when equilibrium time is much shorter
than timescale of forcing and (B) a buffered response when equilibrium time is longer
than timescale of perturbation.
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that can result in recognizable variations in deposit character down
system. Here, we focus on the relevance of steady state in terms of
denudation because of its close association with sediment production.

The physical laboratory experiments of Bonnet and Crave (2003)
highlighted the important observation that climate signals, because
they can affect the totality of an area at once, can trigger an immediate
response of the landscape. In their case, steady state is characterized by
a constant mean elevation (Montgomery, 2001; Willett and Brandon,
2002) and, thus, a response is a change inmean elevation. This contrasts
with rock uplift signals, expressed in the formof base‐level changes (see
Schumm, 1993), which propagate as waves of headward incision and
diachronously affect the landscape (Bonnet and Crave, 2003). In a
study of the response of bedrock channels to tectonic and climate sig-
nals using generic stream-power fluvial incision, Whipple (2001)
showed response times ranging from 250 kyr to 2.5Myr to both tecton-
ics and climate. In this study, the response time is the time required for
the landscape to return to a steady state defined as a statistically invari-
ant topography (i.e., constant mean elevation; Montgomery, 2001;
Willett and Brandon, 2002) and constant denudation rate.When climate
and tectonics act jointly, the response of a stream-power fluvial land-
scape may essentially be immediate (i.e., response time tends to zero;
Whipple, 2001). Improvements of the stream-power erosion law
produce divergent results as to landscape reactivity. Among these, the
consideration of dynamic adjustment of channel width during perturba-
tions induces faster reaction of fluvial landscapes than if channelwidth is
not considered (Whittaker et al., 2007; Attal et al., 2008). Conversely, a
series of stream-power inspired models (e.g., Gasparini et al., 2007)
including a degree of dependency on saltating bedload tends to suggest
longer response times than those predicted by detachment-limited
stream power (such as those of Whipple, 2001; see above).

Using a nonlinear 1D diffusive model of catchment erosion,
Armitage et al. (2013) showed that small (10–20 km long) catchments,
such as those draining normal-fault bounded footwalls, are reactive to
single-step, sustained changes of precipitation but tend to temporally
buffer cyclic precipitation variations with Milankovitch periodicities
(i.e., 100 kyr, 400 kyr, 1.2Myr). Using a 2Dmodel of landscape evolution
including diffusive hillslopes and detachment-limited stream-power-
governed bedrock incision, Godard et al. (2013) found that a given
landscape possesses a characteristic resonance periodicity for which
landscape response to corresponding climatic oscillation is maximized
in terms of sediment supply. For more easily erodible lithologies,
landscape response to orbitally controlled climate signals could be a sig-
nificant increase or decrease in the amplitude of sediment‐supply vari-
ations. Thus, some landscapes respond to, might even amplify, climate
and tectonic signals. In landscapes dominated by diffusive hillslopes,
however, such as in soil-mantled, low-relief settings, diffusion itself
might be very efficient at filtering climatic or tectonic oscillations
because of slow signal propagation (e.g., Furbish and Fagherazzi, 2001).

3.1.2. Qs signal generation and propagation in the transfer zone and
preservation in the accumulation zone

Inmany instances, the terminal depositional sink is not immediately
adjacent to the source area but linked to it by a fluvial system. In such
cases, it was recognized that the fundamental problem becomes
whether climate and tectonic sediment‐supply signals that originate
in the erosion zone are propagated by the transfer system to the sedi-
mentary basin (Castelltort and Van Den Driessche, 2003). Paola et al.
(1992) developed the idea that to understand stratigraphic response
to external factors it was fundamental to consider the periodicity of cy-
clic signals with respect to the characteristic equilibrium, or response,
time (Teq) of a sediment-routing system (Fig. 5). They expressed Teq
(time unit) for a 1D fluvial profile as a function of characteristic system
length (L) and diffusivity (Κ):

Teq∼L2=K: ð1Þ

Thus, the larger the system (i.e., the longer the transfer zone), the
longer its equilibrium time, whereas the more diffusive the transfer
zone, the shorter its equilibrium time. A prediction of this model is
that cyclic perturbations with periods less than Teq are buffered by the
system's response time. In contrast, variations of boundary conditions
with periodicities greater than Teq produce stratigraphic patterns
in the sedimentary basin (Fig. 5), but these patterns might be similar
for subsidence and sediment‐supply variation (Paola et al., 1992; see
also Marr et al., 2002 and Allen, 2008b).

On the basis of a comparison between the modern river sediment
discharge of some large Asian rivers and the average sediment discharge
deduced from sedimentary basins over the last 2 million years, Métivier
and Gaudemer (1999) suggested that large alluvial systems of Asia
behave as diffusive entities buffering the high-frequency climate change
known for the late Cenozoic (see also Schaller et al., 2001; andWittmann
et al., 2011). Métivier and Gaudemer (1999) computed equilibrium
times of N1 Myr for such rivers using an expression they proposed for
the diffusivity (K) of large rivers as a function of sediment discharge
(Qs), river channel or channel-and-floodplain width (W), and slope (S):

K ¼ Qs= W � Sð Þ ð2Þ

Following Métivier and Gaudemer (1999) results, Castelltort and
Van Den Driessche (2003) calculated the diffusive response time of 93
of the largest modern rivers to investigate the down-system strati-
graphic response to high-frequency (104 yr) cycles of sediment supply.
Castelltort and Van Den Driessche (2003) found that the characteristic
equilibrium times of transfer zones comprising large rivers, which typ-
ically include extensive floodplains, are 105–106 yr, exceeding 104 yr
climate oscillations. When channel width rather than alluvial valley
width is used in this relationship the resulting equilibrium times are
minimum equilibrium times.

These diffusion-based investigations suggest that temporary, and in
some cases permanent, storage of sediment in catchment and/or
transfer-zone sinks (see also Allen, 2008a; Wittmann et al., 2011;
Covault et al., 2013; and references therein) can mask the down-
system stratigraphic record of external perturbations to the sediment-
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routing system. In the case of a large, hinterland-river-continental
margin sediment-routing system, this transient storage of sediment can
result from deposition in floodplains (Allen, 2008b). Larger catchments
can retain sediment for longer periods as a result of more space available
for sediment storage and consequent resistance to complete hinterland-
to-continental margin sediment transfer in response to short-term,
small-magnitude external perturbations, such as local storms and earth-
quakes (Allen, 2008a). Métivier and Gaudemer (1999) suggested that
rivers and floodplains proportionally adjust to climate changes and
upstream denudation in buffered catchments in which sediment loads
are approximately balanced over different timescales. That is, if upstream
denudation is reduced, the river will incise its floodplain to keep the sed-
iment load at the outlet constant. Conversely, if climate changes force
greater upstream denudation, the river is likely to use that increased
sediment load to recharge its previously excavated floodplain. In this
way, the steady transfer of reworked floodplain sediment to an outlet
can be maintained over a range of timescales (Métivier and Gaudemer,
1999; Phillips, 2003; Phillips and Slattery, 2006; Covault et al., 2013;
among many others). The ubiquitous alluvial terrace fills that ornate
many river systems worldwide testify to the residence time of
sediments in the transfer zone.

These theoretical results contrast with the sensitivity to Late Quater-
nary climate change apparently displayed by some large fluvial systems
such as the Ganges–Brahmaputra (Goodbred and Kuehl, 1999, 2000a,b;
Goodbred, 2003) and suggest that, although alluvial systems may
behave diffusively in response to sediment‐supply variations, they may
be sensitive to perturbations of water discharge, which can increase or
decrease diffusivity (Simpson and Castelltort, 2012). Using physical
laboratory models of river response to water discharge and sediment‐
supply change, Van Den Berg Van Saparoea and Postma (2008) show
that experimental rivers respond faster to changes of discharge than
to perturbations of up-system sediment supply. Van Den Berg Van
Saparoea and Postma (2008) concluded that high-frequency cyclic
patterns in marine delta-shelf successions were most likely controlled
by high-frequency changes in discharge driven by climate, whereas
the low-frequency sequences were likely a result of low-frequency
changes in sediment supply driven by tectonic deformation.

We recognize that the results of diffusion-based approaches may be
dependent on our current ability to estimate parameters of the diffusion
laws. Simpson and Castelltort (2012) explored the response of a 1D al-
luvial river bed to sediment concentration and water discharge pulses
using a physically based numerical model of interacting water flow
and sediment transport without a priori assumption of diffusive behav-
ior. Consistent with the experiments of Van Den Berg Van Saparoea and
Postma (2008), in this model the strong coupling between water dis-
charge and river gradient induces amplified sediment‐supply variations
in response to oscillations of water discharge,whereas sediment‐supply
oscillations are dampened because of the negative feedback between
sediment concentration and channel gradient. In the future, additional
constraints on the behavior of sediment transfer will result from other
approaches such as computational fluid dynamics (e.g., Edmonds and
Slingerland, 2007) or cellular automata (e.g., Murray and Paola, 1997).

3.1.3. Potential influence of internal dynamics on Qs signal recognition
In addition to the buffering of signals linked with the processes

reviewed in the previous sub-section, perturbations to sedimentary
signal propagation arise from sedimentary processes occurring within
the river-floodplain and/or river-coastal plain segments that need not
be driven by up-system forcings. Such self-organizing processes,
referred to as autogenic dynamics (Paola et al., 2009), and first empha-
sized by Beerbower (1964), can create organized depositional architec-
ture (e.g., Hoyal and Sheets, 2009). Critical to this discussion is the
potential for climate or tectonic signals that originated in the catchment
to be significantly masked, modified, or ‘shredded’ by such autogenic
dynamics (Jerolmack and Paola, 2010). Variability in sediment transport
is a result of the following general autogenic cycle: transient storage of
sediment, exceedance of some critical threshold, and release of sedi-
ment during relaxation following failure. Jerolmack and Paola (2010)
likened the threshold behavior of sediment storage and release to
morphodynamic turbulence, analogous to turbulence in fluid flows.

Recently, Ganti et al. (2014) developed a quantitative framework to
isolate autogenic, morphodynamic processes from external, environ-
mental forcings in the stratigraphic record. They showed that the
calculated advection length (la) for settling sediment sets bounds on
the scale over which autogenic processes operate:

la ¼ uhs=ws ð3Þ

where u is the flow velocity, hs is the average sediment settling height,
andws is the settling velocity. The advection length scale is the horizon-
tal length over which an average particle is transported in the flow
before falling to the bed. Ganti et al. (2014) argued thatmorphodynamic
feedbacks, or autogenic ‘shredding,’ can only occur if the length scale of
interest, e.g., the system size, is larger than la.

Wang et al. (2011) recognized the aforementioned work on
damping or ‘shredding’ of upstream, external signals by autogenic
sediment transport processes, and used numerical and physical experi-
ments, as well as some field data, to gain insight into the timescale of
compensational stacking of deposits within a basin. This compensation
timescale (Tc) is defined as:

Tc ¼ l=r ð4Þ

where l is a roughness length scale, equal to the amount of topographic
‘mounding’ due to local channel deposition produced between each
avulsion, and r is the basin-wide, long-term sediment accumulation
rate. This equation suggests that the geometry of deposits carries the
signature of stochastic autogenic dynamics during the time necessary
to fill a basin to a depth equal to the amount of surface roughness in a
sediment-routing system. Tc provides an estimate of temporal scales
below which stratigraphers should be cautious about interpreting
signals. As a case in point, Wang et al. (2011) calculated Tc for the
Lower Mississippi Delta in which they consider that the roughness
length scale, l, was represented by the mean channel depth for the
Lower Mississippi River of 30 m and a sediment accumulation rate of
0.26 m/kyr, estimated for the past 8 Myr (Straub et al., 2009). Tc is 115
kyr, which is ~100 times larger than the ~1,300 yr recurrence of large
avulsions of the Lower Mississippi River (Aslan et al., 2005). However,
subsequent field data from the Lower Mississippi River indicate a
rapid response to glacio-eustatic variation since Oxygen Isotope Stage
7 (~200 ka) (Shen et al., 2012). Large amplitude sea-level rise and fall
prompted rapid and widespread fluvial aggradation and incision,
respectively, the effects of which extended N600 km upstream from
the present shoreline (Shen et al., 2012).

The models and experiments discussed above highlight that signal
buffering as a result of sediment storage in up-system segments as
well as depositional dynamics in the sink can mask the stratigraphic
record of external perturbations to the sediment-routing system,
although the quantitative expression of this masking are still being re-
solved. In summary, signals of a forcing can bepassed to a basin and pre-
served in the stratigraphic record when their period exceeds the
characteristic equilibrium time of the sediment-routing system, but
this is valid only if their period is also larger than the characteristic time-
scale of autogenic sediment transportfluctuation and/orwhen themag-
nitude of the forcing is larger than themagnitude of internal oscillations
(e.g., on the order of the size of catchment and alluvial accommodation)
(Jerolmack and Paola, 2010). In the next section we review sediment
budgets of natural sedimentary systems, which allow for accounting
of our principal vector of relevance, Qs.
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3.2. Paleo-sediment budgets of natural systems and implications for signal
propagation

In this section we will review work on sediment budgets at 102–
105 yr timescales and implications for signal propagation via three
sediment-routing systems: (1) tectonically active, small systems of
southern California; (2) tectonically quiescent, larger systems of the
northwestern Gulf of Mexico; and (3) tectonically active, larger systems
of southern Asia. By focusing on sediment delivery from onshore catch-
ments to the deep sea, which is the ultimate sink for coarse-grained
terrigenous material, we highlight the role of the shelf as a Qs gateway
and filter.

3.2.1. Methods for paleo-sediment budget reconstruction at intermediate
timescales

Just as microfossils are the carriers of isotopes used to reconstruct
geochemical signals, sediment supply is here considered the carrier of
climate and tectonic signals. Thus, determining a paleo-sediment bud-
get, the spatial and temporal partitioning of mass removed, transferred,
and depositedwithin a routing system, is valuable for the interpretation
of signal propagation and preservation. For the sake of brevity, we do
not present a comprehensive reviewof the application of sediment bud-
get concepts to timescales beyond direct measurement and instead
refer the reader to a recent review by Hinderer (2012). Determining
accumulated mass from stratigraphic volumes is straightforward in
concept, but can be challenging in practice as a result of lack of appropri-
ate data (e.g., seismic-reflection data with chronologic control) and/or
uncertainties in post-depositional stratal preservation (Sadler and
Jerolmack, 2015). The geochemistry and mineralogy of sediment is
often used to determine routing pathways as well as the relative
contributions and potential residence times of terrigenous versus
marine-derived material.

Two of the three systems reviewed below combine cosmogenic
radionuclide (CRN) analysis for catchment-integrated denudation and
radiocarbon dating for continental-margin deposition to reconstruct
sediment budgets. Advances in CRN analysis provide catchment-
integrated denudation rates and sediment loads at 102–105 yr time-
scales (von Blanckenburg, 2005), which are comparably similar to the
timescales of deposition measured in offshore basins with radiocarbon
ages (generally b50 ka; Reimer, 2012). CRNs are produced in situ as sec-
ondary cosmic rays interact with rocks within meters of Earth's surface;
longer exposure to secondary cosmic rays as a result of slower denuda-
tion produces more nuclides. Sediment can be liberated from these
rocks, mixed in the catchment through hillslope and fluvial transport
processes, and ultimately deposited near the catchment outlet. Accord-
ingly, the CRN abundance measured in sediment deposited near the
catchment outlet can be used to divulge the catchment-wide denuda-
tion rate, which is inversely proportional to nuclide abundance
(Brown et al., 1995; Bierman and Steig, 1996; Granger et al., 1996).

Regardless of the specific tools used, it is of critical importance that
allmass inputs and outputs to the systemare considered and accounted.
Attempting to close a sediment budget at timescales beyonddirectmea-
surement provides an opportunity to evaluate other inputs and outputs
that might not be evident with a qualitative interpretation.

3.2.2. Small and tectonically active systems of Southern California
Tectonically active southern California is an ideal setting in which to

investigate millennial-scale mass balance as a result of close proximity
of sediment-routing components: onshore erosion zones are located
adjacent to short alluvial-coastal plain depositional environments and
offshore, confined sedimentary basins of the California Continental
Borderland (Fig. 6A). The confinement of the offshore basins facilitates
complete accounting for detrital mass relative to open-ocean basins,
such as the Arabian Gulf and Bay of Bengal (Weber et al., 1997; Curray
et al., 2002). Furthermore, many of the submarine canyon and fan
systems of the California Continental Borderland are consistently linked
to the shoreline and maintain connectivity even during Holocene
highstand (Normark et al., 2009).

Covault et al. (2011) used CRNs from the Peninsular Ranges of
southern California to calculate catchment-integrated denudation
rates, which varied from 0.07 to 0.24mm/yr since 10 ka. These denuda-
tion rates were calculated to be 1.9–2.4 Mt/yr and integrated across the
total area of drainage basins (N6 × 103 km2) delivering sediment to the
offshore Oceanside littoral cell and the La Jolla submarine canyon and
fan system. Based on radiocarbon-constrained seismic-reflection map-
ping (Covault et al., 2007) the mass accumulation rate of the La Jolla
submarine fan was calculated to be 2.6–3.5 Mt/yr since the Last Glacial
Maximum (LGM). Although the mass of material denuded from Penin-
sular Ranges catchments is in close agreement, of the same order of
magnitude, as the mass of material deposited in the La Jolla submarine
fan, deep-sea deposition exceeds terrestrial denudation by 11%–89%.
This additional supply of sediment could be owed to enhanced dispersal
of sediment across the shelf caused by sea cliff erosion during postgla-
cial shoreline transgression and initiation of submarine mass wasting.

The terrestrial source to deep-sea sink mass balance does not show
orders of magnitude inequalities that might be expected in the wake
of major sea-level changes since the LGM. Thus, sediment-routing pro-
cesses in a globally significant class of small, tectonically active systems
might be fundamentally different from those of larger systems that
drain entire orogens, in which sediment storage in coastal plains and
wide continental shelves can exceed millions of years (Milliman and
Syvitski, 1992). Furthermore, in such small systems, depositional chang-
es in the deep offshore can reflect onshore changes when viewed over
timescales of several thousands of years to more than 10 kyr. For exam-
ple, Romans et al. (2009) and Covault et al. (2010) examined Holocene
deposition of theHueneme andNewport deep-sea depositional systems
offshore of southern California. Integrated datasets of radiocarbon ages
from sediment cores and seismic-reflection profiles demonstrated that
variability in rates of Holocene deep-sea turbidite deposition is related
to complex ocean–atmosphere interactions, including enhancedmagni-
tude and frequency of El Niño-Southern Oscillation (ENSO) cycles,
which increased precipitation and fluvial water and sediment discharge
in southern California (Fig. 7). Thus, millennial-scale climate forcings
are represented as a measureable signal in the stratigraphic record of
the deep-sea segment.

3.2.3. Large and tectonically quiescent systems of the Western Gulf of
Mexico

A sediment budget for the Brazos and Trinity rivers linked to off-
shore depositional systems in shallow-marine and deep-water environ-
ments of the northwestern Gulf of Mexico can be balanced by
integrating recent work of Hidy et al. (2014) and Pirmez et al. (2012).
In contrast to the small and tectonically active southern California catch-
ments, the Brazos and Trinity rivers drain a large (~2 x 105 km2) tecton-
ically quiescent, non-glaciated, low-relief landscape (Fig. 6B). Hidy et al.
(2014) evaluated how denudation rates from CRNs responded to cli-
mate change during the last glacial cycle (~15–45 ka): Brazos River
CRNs yielded a mass load of 5.3 Mt/yr since 35 ka; and Trinity River
CRNs yielded a mass load of 2–4 Mt/yr. Furthermore, Hidy et al.
(2014) analyzed the CRN ratio of 26Al/10Be in river sediment to evaluate
its transient storage in the catchment in route to its final depositional
site (see Wittmann and von Blanckenburg, 2009; Wittmann et al.,
2011). Mass storage on the coastal plain was interpreted to have been
greater during glacial periods with lower sea level. Denudation rates
and mass loads were calculated to be larger during interglacial periods,
which suggest that increased weathering rates associated with warmer
climates accelerated landscape erosion. Furthermore, increased mass
loadmeasured duringwarm interglacial periods is interpreted to reflect
stronger reworking and delivery of sediment to the river mouth than
during cooler glacial periods. An implication of this relationship be-
tween temperature andmass load is that global sediment and potential-
ly dissolved load delivery to the ocean from analogous, tectonically



Fig. 6. Examples of natural sediment‐routing systems examined at intermediate timescales. (A) Small and tectonically active system, Peninsular Ranges and Continental Borderland of
southern California (Covault et al., 2011); (B) Large and tectonically quiescent system, Texas coastal plain and western Gulf of Mexico (Pirmez et al., 2012; Hidy et al., 2014); (C) Large
and tectonically active system, Indus River and Indus submarine fan (Clift et al., 2014).
Indus River floodplain extent from Milliman et al. (1984).
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quiescent, non-glaciated, low-relief landscapes might have been larger
during the warm Pliocene than the cooler Quaternary (Hidy et al.,
2014). However, any transient storage of sediment prior to preservation
in terrace deposits would complicate the interpretation of the CRN data
as representative of catchment denudation.

Pirmez et al. (2012) developed a robust chronostratigraphic
framework from Oxygen Isotope Stage 6, ~120 ka, through the LGM
for the sediment deposited in four deep-water, salt-withdrawal slope
basins of the northwestern Gulf of Mexico (see also Prather et al.,
2012) (Fig. 6B). The deep-water depositional systems were linked to
the Brazos and Trinity river-deltas only during lowstands of sea level,
when the shoreline had regressed N100 km from the present-day
beach to the shelf edge (Mallarino et al., 2006; Anderson et al.,
2016–in this volume). Chronostratigraphy was interpreted from an in-
tegrated database of 3D seismic-reflection data, age control from analy-
sis of cores from Integrated Ocean Drilling Program Expedition 308,
analysis of proprietary cores from Shell Oil Company, and published lit-
erature (Pirmez et al., 2012). The majority of sediment, ~50 km3, was
calculated to have been deposited during a period of relatively low sea
level, between ~15–24 ka, yielding a mass accumulation rate during
this period of 5.5 Mt/yr, which is within the same order of magnitude
of the CRN-derived mass load of the Brazos and Trinity rivers of 7.3–
9.3 Mt/yr (Hidy et al., 2014) during a similar period, generally b35 ka.
The imbalance in rates, with diminished deep-water slope basin mass
accumulation, is likely a result of Brazos-Trinity river-delta deposition
on the exposed shelf as the shoreline had regressed to the shelf edge
between ~15–24 ka. Indeed, Pirmez et al. (2012) estimate a maximum
volume of ~25 km3 of deltaic sediment was deposited between ~15–
24 ka, which yields a mass accumulation rate of 2.8 Mt/yr. This mass
added to the deep-water basin fill yields a total mass accumulation
rate of 8.3 Mt/yr, which is within the range of CRN-derived mass load
(Hidy et al., 2014) of the Brazos and Trinity rivers.

In this system, sea level is interpreted to control the delivery of ter-
rigenous sediment to the deep-water slope basins over 105 yr time-
scales: during periods of relatively high sea level, when the shoreline
had transgressed, the slope basins were interpreted to receive predom-
inantly hemipelagic, fine-grained sediment. During periods of relatively
low sea level and a subaerially exposed shelf, relatively coarse-grained
terrigenous sediment was deposited in the slope basins. However,
mass accumulation during periods of relatively low sea level was
interpreted to have varied between the four slope basins as a result of
a complex interaction between river-delta sediment routing and dy-
namic, salt-withdrawal slope-basin evolution. The complex history of
sediment deposition, storage, and remobilization in the zone between
the modern coastline and the shelf edge over the past ~125 kyr
(Anderson et al., 2016–in this volume) highlights the role of the shelf
as an additional filter of signals generated in the catchment. Therefore,
in contrast to the southern California examples, offshore depositional
records are hypothesized to primarily reflect sea-level-driven accom-
modation changes as opposed to Qs variability from the onshore catch-
ments. However, during glacial periods of terrigenous sediment
delivery to slope basins, deep-water depositional records might reflect



Fig. 7. (A) Map showing two southern California sediment-routing systems, each with negligible onshore sediment storage at millennial timescales and corresponding rapid transfer to
offshore submarine fan systems. (B) Alkenone sea surface temperature (SST) proxy for the California coastal region showing a drying trend in the early Holocene followed by the
development of the modern El Niño-Southern Oscillation (ENSO), which is known to be sensitive to increased SSTs (Barron et al., 2003). (C) Radiocarbon-constrained weighted-average
sediment accumulation rates from Hueneme and Newport submarine fans (Romans et al., 2009; Covault et al., 2011) showing a general correlation of sediment supply to the basin to
precipitation regime and, thus, propagation of climatic signal to the stratigraphic record.
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Qs variability from rivers (Fig. 6B). This might be common to other
sediment-routing systems, where deep-water canyon heads are strand-
ed at the edges of drowned continental shelves during interglacial pe-
riods (Blum and Hattier-Womack, 2009; Covault and Graham, 2010).

3.2.4. Large and tectonically active systems of Southern Asia
Since the LGM, the Indus sediment-routing system comprised a

steep (total relief of nearly 8 km), tectonically active hinterland and
large (~106 km2) catchment (Milliman and Farnsworth, 2011), a delta
located on a wide (~120 km) shelf, and a submarine canyon that fed
the second largest accumulation of terrigenous sediment in the world,
the Indus submarine fan (Fig. 6C). Clift et al. (2014) used seismic-
reflection data, radiocarbon ages, and analyzed the geochemistry (a
suite of major and trace elements, including Zr/Rb, K/Rb, and Nd;
Limmer et al., 2012) and mineralogy of sediment of the Pakistani conti-
nental margin to investigate sediment routing from the Indus river-
delta to the upper submarine canyon (b1300 m below present sea
level) since the LGM. Seismic stratigraphic interpretations of deltaic
clinoforms and radiocarbon ages indicate that the majority of Holocene
Indus river-delta sediment is stored on the shelf (Giosan et al., 2006;
Clift et al., 2014). Clift et al. (2014) interpreted a variety of deltaic
clinoform seismic reflections and concluded that sediment used to con-
struct the shelf-edge delta deposits was reworked and dispersed from
mid-shelf locations basinward. Neodymium isotopes presented by
Limmer et al. (2012) suggests transient storage on the shelf was signif-
icant prior to delivery to the canyon and fan system. Neodymium iso-
tope ratios indicate different values compared to those expected from
a fluvial source, which points to reworking of marine sediment deposit-
ed during the LGM(Clift et al., 2014). Deposition at the head of the Indus
Canyon was measured to be rapid during the Holocene, with evidence
for annual delivery of Indus river-delta sediment. However, down-
stream, ~1,300 m below present sea level, the youngest deposits are
greater than ~7 ka, and no terrigenous sand has reached the upper sub-
marine fan during the Holocene (Clift et al., 2014).

The Indus sedimentary record at the Pakistani continental margin
since the LGM indicates reworking and transient storage of sediment
on the shelf and within the submarine canyon en route to the deep
Arabian Sea. Thus, deep-water deposits of the Indus fan likely do not
faithfully record Qs variability related to climatic or tectonic events on-
shore over timescales of 103–104 years (Clift et al., 2014). This conclu-
sion highlights the role of the shelf segment as a critical process
boundary as well as a Qs gateway between land and sea. This is similar
to the Brazos–Trinity sediment-routing system (Fig. 6C), where the
deep-water depositional record primarily reflects sea-level changes as
opposed to Qs variability from the onshore catchments. Moreover, sed-
iment storage in the vast Indus floodplain (Fig. 6C) likely buffers climat-
ic or tectonic signals generated in the up-system headwaters of the
Himalayas. Thus, in these large sediment-routing systems (see also
the Amazon system, e.g., Wittmann et al., 2011), millennial to million-
year Qs signals that originated in the erosion zone are potentially only
recorded in alluvial and floodplain deposits.

3.3. Synthesis of intermediate timescale signal propagation

The theory, models, and natural systems reviewed above inform us
about the plausibility of different forcings and how theymight generate
Qs signals that are then transmitted by the transfer zone to the ultimate
depositional sink. These concepts are synthesized in Fig. 8, which con-
tains schematic representations of many of the scenarios reviewed in
preceding sections, which can also be viewed as hypotheses about
sediment-routing system dynamics worthy of further investigation.

Tectonic signals (e.g., uplift rates) with periods of N50 kyr are likely
to produce Qs signals at the outlet of the erosion zone (Fig. 8A). Such
signals may be transmitted to the accumulation zone if the transfer
zone is short (b300 km) but will be buffered if the transfer zone is
long (N300 km), unless their period exceeds 100 kyr. Tectonic signals
with periods of b50 kyr are likely to be already buffered by the dynam-
ics of the erosion zone itself; i.e., before they reach the outlet of the
erosion zone (Fig. 8B).

Several antithetic results exist with respect to climate signals
(e.g., precipitation changes) in the erosion zone. Different models
propose that climate signals might be buffered, faithfully transmitted,
or even amplified by the erosion zone (Fig. 8C–E). In some natural
examples, where sediment budgets have determined the magnitude
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of sediment supply exiting the erosion zone, there is a relationship be-
tween climate (e.g., variation in precipitation) and Qs signals as record-
ed in the sink (e.g., Covault et al., 2007; Romans et al., 2009; Fig. 7).
However, it is challenging to test whether climate signals are amplified
since no predictive understanding exists between a given climate
change and the corresponding amplitude of catchment response in
terms of sediment supply. However, as discussed above, numerical
models of sediment transport and deposition offer the opportunity to
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elucidate the question of climate signal amplification (e.g., Armitage
et al., 2011). Nonetheless, intermediate climate signals in the form of
water discharge (Qw) seem to trigger a strong response of the transfer
zone in terms of sediment supply andmay thus be faithfully transmitted
or even amplified to sedimentary basins (Fig. 8C–E) (Simpson and
Castelltort, 2012; Godard et al., 2013).

At themoment, few constraints exist on the characteristic saturation
timescales and amplitudes of internally generated Qs fluctuations in
natural systems. Current estimates of the typical timescale for channel
stacking in large river systems (e.g., Hajek et al., 2010) suggest that
autogenic dynamics may be able to completely mask or even destroy
sedimentary signals with periods of less than 100 kyr.

4. Deep-time (≥107 yr) sediment routing

4.1. Challenges and uncertainties in deep-time signal propagation analysis

As sedimentary systems age to tens of millions of years and older,
the ability to explicitly measure or calculate source-to-sink sediment
supply becomes increasingly challenging because: (1) sediment
production areas are poorly preserved or not preserved at all, (2) there
is increased uncertainty regarding boundary conditions such as tectonic
setting and climate regime, (3) of the diminishing resolution of existing
chronological tools, and (4) of the completeness of the stratigraphic
record (Romans and Graham, 2013).

Reading the sedimentary record in deep time also requires under-
standing forcings with long periods. The maximum equilibrium times
resolvable for erosional and depositional processes inmost sedimentary
systems is commonly ~106 yr (e.g., Paola et al., 1992; Whipple, 2001;
Castelltort and Van Den Driessche, 2003; Allen, 2008b). Thus, tectonic
and climatic signals with periods of at least several millions of years
could induce a measureable equilibrium response of the Earth's surface
that is potentially recorded in stratigraphic successions. In other words,
long-period stratigraphic archives have more immunity to the internal-
ly generated dynamics that plague intermediate timescales. Examples
of long-period forcings include the development of orogens and their
coupled sedimentary basins (Dickinson, 1974; DeCelles et al., 2009),
Phanerozoic changes of Earth's sea level (e.g., Miller et al., 2005), and
significant shifts in global climate such as the transition from
Cretaceous–Eocene greenhouse to Oligocene-present icehouse condi-
tions (e.g., Zachos et al., 2008).

When peering back even further in time (≥108 yr) we lose details
about the fundamental boundary conditions of tectonic setting and
environmental conditions that are explicitly known for the modern or
reliably reconstructed for historical to intermediate timescales. Thus,
in many cases, reconstructing those boundary conditions is the primary
goal of sedimentary analysis. Linking strata of such old ages to sediment
source areas is challenging as a result of major tectonic regime changes
(e.g., closing and opening of ocean basins; Wilson, 1966), poorly
understood oceanic and atmospheric conditions, and non-actualistic
Earth processes.

Our ability to reconstruct deep-time Earth surface conditions is
based on rock availability: preserved as intact depositional architecture
and/or detrital material representative of long-gone source areas. The
following sections briefly review methodologies for characterizing the
unpreserved sediment-production zones of ancient systems and
potential value for interpreting Qs signal propagation.

4.2. Inferring catchment characteristics and sediment supply from
stratigraphic architecture

Erosion and transfer zones are inherently not preserved in deep time
and thus we must rely on preserved stratigraphy to reconstruct their
characteristics. In this section we briefly reviewmethods for estimating
catchment area from stratigraphic architecture.
The dimensions of modern river channels scale to flood, or bankfull,
discharge (Bridge and Demicco, 2008; and references therein), which
affords estimation of water discharge from preserved fluvial channel
stratigraphic architecture (e.g., Bridge and Tye, 2000; Bhattacharya
and Tye, 2004; Adams and Bhattacharya, 2005; Blum et al., 2013;
Bhattacharya et al., 2016–in this volume; Eriksson and Romans, in
press). Analyses of modern river systems demonstrate a relationship
between water discharge and catchment area (e.g., Hack, 1957; Rodier
and Roche, 1984; Matthai, 1990) and a global empirical model shows
that catchment area and relief are first-order controls on sediment sup-
ply (BQART model of Syvitski and Milliman, 2007). These relationships
suggest that an estimate of paleo-catchment area can be determined
from stratigraphy with the proviso that the channelized strata mea-
sured are truly representative of the alluvial system (see Blum et al.,
2013; and Bhattacharya et al., 2016–in this volume for discussion of
river channel and alluvial valley scaling with respect to sediment deliv-
ery dynamics). However, discharge-to-area relationships aswell as sed-
iment load-to-area relationships frommodern rivers are shown to vary
as a function of precipitation and runoff patterns, vegetation, soil type,
and geology (e.g., Milliman and Farnsworth, 2011; Covault et al.,
2013; and references therein). Regional hydraulic curves,which capture
such characteristics from modern systems (e.g., Leopold and Maddock,
1953), can be used to further constrain the estimate of catchment area
if some aspects of the paleoclimate can be determined. Davidson and
North (2009) provide a comprehensive discussion of the values and
limitations of the regional hydraulic curve approach, including example
applications from the deep-time rock record.

Sediment yield can be approximated with the regional hydraulic
curve approach, providing insight about the paleo-sedimentary system.
In practice, however, the calculation of any mass supply is only as accu-
rate as the chronologic control available; mass supply averaged over
N106 yr will obviously not capture shorter-period fluctuations. Further-
more, such paleo-hydrologic methods are burdened with uncertainties
that are challenging to quantify, which limits accuracy to an order of
magnitude (Holbrook and Wanas, 2014). These methods are also
susceptible to aliasing the record of Qs. For example, a single, static pa-
leogeographic reconstruction might be used to inform paleo-hydrology
over a large duration of geologic time,whichprovides averageQs during
that time. However, geologic evolution, and especially Qs, is dynamic
and influenced by the extreme events. Some applications can be satis-
factorily addressed with order-of-magnitude estimates, such as the se-
lection of modern analogs for ancient systems (Bhattacharya and Tye,
2004; Bhattacharya et al., 2016–in this volume). How to better link
paleo-catchment reconstructions with interpretations of signal propa-
gation remains a challenge. Ultimately, because thesemethods incorpo-
rate information from modern systems, the reliance on an actualistic
approach should be acknowledged.

4.3. Source area signals from detrital material analysis

Another approach to reconstruct aspects of the erosion zone of deep-
time sediment-routing systems is to characterize the detrital material
that is preserved in sedimentary rocks. Provenance analyses focused on
detrital products released from the erosion zone has long been used to
reconstruct and interpret deep-time paleo-drainage systems and their
relationship to tectonic forcings (Dickinson, 1974; Graham et al., 1986;
McLennan et al., 1983; amongmany others). More recently, radioisotope
provenance studies have been employed to detect sediment supply sig-
nals in deep time by identifying source terranes (Fig. 9) and tracking
their evolution through a basin fill (e.g., Dickinson and Gehrels, 2003;
Weislogel et al., 2006; Carrapa, 2010; Romans et al., 2010; Blum and
Pecha, 2014; and references therein). The common pre-conditions for
application of such methods are related to specific characteristics of the
source areas, which should be composed of rocks with different tectonic
histories, distinctive crystallization and cooling ages, and the presence of
the unique minerals (Lawton, 2014).



Fig. 9.Conceptual diagramof distributions of crystallization ages of detritalminerals (e.g., zirconU–Pbgeochronology) as indicators of sediment-routing systemconnectivity,which can be
used to aid reconstruction of sediment supply history from deep-time stratigraphic archives.
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Combining different thermochronometers on single detrital mineral
grains such as zircon, monazite, white mica, and apatite can be used to
determine cooling ages associated with different closure temperatures
(depths) with which to reconstruct tectono-thermal events (Carrapa
et al., 2003; Rahl et al., 2003; Carrapa, 2010; Lawton, 2014). This has po-
tential application for the interpretation of the propagation of a tectonic
signal across a paleo-landscape by constraining separate events
(e.g., crystallization and cooling) of a single grain such that durations
and rates can be determined. Thesemethods provide rates formountain
Fig. 10. Conceptual diagrams of two different types of lag times to be calculatedwith combinatio
a particle through cooling via erosional exhumation followed by transport and deposit
(e.g., crystallization age) and lower-temperature cooling age of a single grain (e.g., zircon) and r
age and depositional age and represents the time from closure temperature depth to surface ex
position (adapted from Rahl et al., 2007). A consistent Lag time type B calculated through a strat
ing erosion rates through time. Note that time within partial annealing/retention zones as wel
belt emplacement and exhumation, helping to refine timing andmagni-
tude of tectonic processes.

For example, when zirconU–Pb crystallization ages are coupledwith
zircon (U–Th)/He exhumation ages, apatite fission-track (AFT), and/or
apatite (U–Th)/He methods, we gain critical insight into the timing of
rock cooling, inferred exhumation, lag times between different closure
temperature depths, as well as lag times between cooling and deposi-
tion (Fig. 10) (e.g., Rahl et al., 2003; Reiners and Brandon, 2006;
Painter et al., 2014). Lag time was originally defined as the difference
ns of cooling ages and depositional age. (A) Schematic cross section depicting trajectory of
ion. (B) Lag time type A is the difference between higher-temperature cooling age
epresents exhumation from depth. (C) Lag time type B is the difference between a cooling
humation plus transport and transient storage in the sediment-routing system prior to de-
igraphic succession indicates steady erosionwhereas departures from that indicate chang-
l as sedimentary and/or tectonic burial can complicate simple lag time determinations.
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between the cooling age of a detrital mineral and the depositional age of
its host strata (Brandon and Vance, 1992; Garver et al., 1999). According
to theoretical modeling, the variability in cooling age-depositional age
lag times through a stratigraphic succession could be used to infer
changing erosion rates in an orogenic belt (Rahl et al., 2007), which is
a potentially powerful tool to estimate Qs in deep time (Fig. 10). Most
of these studies focus on synorogenic basinswith inferred short transfer
zones and correspondingly short duration of transient storage in order
to interpret orogenic signals. Minerals from distinct source regions
might display overlapping crystallization ages related to different volca-
nic events, which are indistinguishable using a U–Pb dating technique
(e.g., Saylor et al., 2012). Coupling these ages with (U–Th)/He ages can
help distinguish older exhumed regions fromyounger, especiallywithin
the context of the omnipresent Grenville U–Pb age populations of the
Appalachian orogenic belt (Rahl et al., 2003).

Tectonic and/or sedimentary burial can reset thermochronometers,
complicating a simple exhumation to erosion relationship. In some
cases, however, orogenic recycling can be constrained by integrating
double dating with time-temperature modeling of burial history
(Fosdick et al., 2015). These techniques will continue to be used to re-
construct paleo-drainage system connectivity and evolution, which
will help track changes in sediment supply over ≥107 yr timescales
(Carrapa et al., 2003).

4.4. Sedimentary system mass balance in deep time

As reviewed in preceding sections, a full accounting of mass supply
and storage among erosion, transfer, and accumulation zones of a
sediment-routing system can aid interpretation of signal propagation.
For example, transient storage of sediment in floodplains and coastal
plain segments at intermediate timescales can buffer the transmission
of Milankovitch-controlled supply entering the sink (Fig. 6C). These
same concepts can be applied to deep-time systems, but with the signif-
icant challenges that erosion/transfer zones are typically not morpho-
logically preserved and chronology is more poorly resolved.

Despite these uncertainties, theory and methodologies have been
and are being developed with the goal of characterizing mass-balance
in ancient systems. Paola and Martin (2012) built on previous work of
Paola and Voller (2005) and Strong et al. (2005) to apply mass-balance
concepts to quantitative characterization of sedimentary basin fills. This
and similar studies (e.g., Whittaker et al., 2011; Carvajal and Steel,
2012; Petter et al., 2013) aim to improve the estimation of Qs from
time-averaged stratigraphy. Sadler and Jerolmack (2015) point out that
well-documented 1D measurement-interval effects on rates of denuda-
tion (e.g., Gardner et al., 1987) and accumulation (e.g., Sadler, 1981)
are eliminated with full spatial averaging because sediment generation
and depositionmust balance. Closing the sediment budget for an ancient
system by accounting for all inputs and outputs is challenging (Hinderer,
2012; Allen et al., 2013). However, Sadler and Jerolmack (2015) make
the case that avoiding linear rate measurements (i.e., maximizing volu-
metric analysis) and avoiding rates of any kind derived from the transfer
zone can significantly minimize the measurement-interval bias.

In the same context as box models or other budget diagrams
(e.g., Walling and Collins, 2008), Hay et al. (1989) developed a method
for generating mass-balanced paleogeographic maps. These maps aim
to depict the source-to-sink redistribution of mass through time by
tracking paleotopographic evolution at ≥107 yr timescales. Similarly, re-
cent efforts byMeyers and Peters (2011) aim to reconstruct stratigraph-
ic volume andmass distribution through time in relation to long-period
(≥107 yr) tectonic and/or sea-level cycles. The utility of suchmethods to
signal propagation has yet to be explicitly addressed. Following Allen
et al. (2013), wherein the challenge of estimating sediment supply
from strata is termed ‘The Qs problem’, Michael et al. (2013) determine
a sediment budget for Late Eocene (~42–34 Ma) foreland basin strata
and use resultant grain-size partitioning information to reconstruct
tectonic subsidence.
The tectonically active region of southern Asia includes high rates of
denudation andmass redistribution,making it an ideal locale to develop
longer-term sediment budget concepts. Johnson (1994) accounted for
the volume of sediment deposited in foreland basins, deltas, and the
Indus and Bengal submarine fans forward of the Himalayas to explore
Cenozoic sediment-routing evolution and its relationship to uplift and
exhumation. Using information from literature, Johnson (1994) calcu-
lated that the Himalayan Main Central Thrust, which is interpreted to
have been emplaced ~20 Ma, to be of insufficient volume to balance
the depositional systems. Thus, Johnson (1994) posited that regions
outside the Himalayas, including Tibet and the Karakoram, might have
been significant sediment source areas during the Cenozoic, especially
prior to the emplacement of the Himalayan Main Central Thrust.

Clift et al. (2001) used a seismic stratigraphic interpretation to ac-
count for the Cenozoic deposition of the Indus Fan. The erosional record
on land was constrained from provenance analysis using Pb and Nd
isotopic compositions and published thermochronology. Cenozoic
land-to-deep sea Indus sediment routing shows a balance of erosion
and deposition, with a greater volume of eroded rock during the
Neogene, and corresponding greater deposition on the Indus submarine
fan during the Neogene. However, the Paleogene was characterized by
rapid erosion and coupled accumulation, with deposition focused in
the regions of the Katawaz Basin, the Makran accretionary wedge, and
the Indus foreland.More recently, Clift et al. (2008) compared published
thermochronology from theHimalayas toweathering and climate prox-
ies recorded in Neogene deposits from the South China Sea, Bay of Ben-
gal, and Arabian Sea. Erosion of the Himalayas was interpreted to have
intensified ~23–10 Ma, and slowed to ~3.5 Ma, but then began to in-
crease during the Late Pliocene and Pleistocene, which correlates with
monsoon intensity interpreted from climate proxies (Clift et al., 2008).

In these studies of sediment budgets of Cenozoic sediment‐routing
systems, the detrital record provides insights into sediment routing evo-
lution, as an indicator of Qs variability, and insights into the tectonic and
climatic controls on erosion and deposition. Similar to the use of mod-
ern systems to guide the interpretation of transport and depositional
processes from preserved strata, we can use historical-timescale
(Figs. 3 and 4) and intermediate-timescale (Fig. 6) sediment-routing
systems as analogs of signal-propagation dynamics for deep-time
systems. Studies of Cenozoic systems are of particular value to better
understand deep-time signal propagation because they combine long-
period forcings with relatively well-documented boundary conditions
that pre-Cenozoic systems commonly lack as a result of tectonic reorga-
nization (Romans and Graham, 2013).

5. Discussion and research directions

External forcings are initially transformed into an Earth-surface sig-
nal through the production of mobile mass that is then redistributed
down system as clastic detritus and solutes (Fig. 1) (Allen et al., 2013).
The character of that signal and to what extent a signal is preserved in
sedimentary records are dependent on the magnitude and frequency
of the initial forcing (Fig. 8), on their initial recording or destruction
(Wheatcroft et al., 2007), on the responses of the different segments
of the sediment-routing system (Castelltort and Van Den Driessche,
2003), on their morphology (e.g., for instance promoting buffered ver-
sus reactive sediment and signal transfer) (Covault et al., 2011), and
on the ratio of signal to noise, in particularwith respect to autogenic dy-
namics (Jerolmack and Paola, 2010). In this review, we emphasized the
importance of sediment supply (Qs) as the main carrier of signals that
originate in erosion zones. Thus, approaches for determining Qs by di-
rect observation and measurement (Figs. 3 and 4), calculation from
measurement of related process (e.g., denudation via cosmogenic radio-
nuclides; Fig. 6), or estimation from stratigraphy and/or detrital min-
erals (Figs. 9 and 10) that are reviewed in this paper are critical to
understanding how those signals are transmitted through the system.
Furthermore, the development of new computational techniques for
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numerical modeling of source-to-sink sediment transport and
deposition promise a deeper understanding of sediment and signal
propagation. The benefit of unraveling processes of sediment and signal
propagation is an enhanced understanding of the coupling of Earth
surface systems and improved capability to invert stratigraphic and
geomorphic records that relate to broader Earth dynamics.

The investigation of signal propagation requires a systems approach,
which is provided by the sediment-routing system, or source-to-sink,
framework (Allen, 2008a) (Fig. 1). The concept of sediment mass bal-
ance is embedded within such a framework and variations in system
morphology provide insight into signal propagation and preservation.
We emphasized the importance of the transfer zone (Fig. 1) because
of its potential role as a ‘buffer’ (e.g., along-system diffusion and tempo-
rary floodplain deposition) and, correspondingly, the effect on rates and
magnitudes of Qs carried to down-system segments. Such transfer-zone
buffering of up-system signals is highly relevant to decoding the
meaning of coastal and marine stratigraphic archives (Figs. 4 and 6).
The transfer-zone concept at historical timescales (b102 yr) is elusive
because sediment storage can occur across the entire system, including
in the erosion zone, leading to potential buffering over short distances.
Reconstructing erosion and transfer zones in deep time (≥107 yr) is
challenging as a result of incomplete or no preservation of these
sediment-routing segments. Characteristics of deep-time sediment pro-
duction and transfer areas can be interpreted by employing provenance
tools, detrital mineral analysis, or application of empirical relationships
based on modern systems, and tested with conceptual, analytical, and
numerical models.

Implications of signal detection over noise are of paramount impor-
tance to interpreting the stratigraphic record of Qs variability. Internal,
or autogenic, dynamics of sediment transport, transient storage, and
release can introduce noise, lags, and/or completely mask the signal of
interest. Experimental and theoretical work has shown that a Qs signal
can be passed to a basin and preserved in the stratigraphic record when
its period is similar to or exceeds the characteristic response time of the
sediment-routing system, but this is valid only if their periods ormagni-
tudes are also larger than the characteristic timescale of autogenic
sediment transportfluctuations (Jerolmack and Paola, 2010).Moreover,
autogenic ‘shredding’ is potentiallymore significant if the length scale of
interest, e.g., the system size, is larger than the advection length scale of
a particle of sediment (Ganti et al., 2014). Field studies focused on
the coarse-grained sediment fraction in small, tectonically active
sediment-routing systems of southern California (Fig. 6A) have shown
that millennial-scale climate forcings are represented as a measureable
signal in the stratigraphic record of the deep-sea segment (Fig. 7)
(Romans et al., 2009; Covault et al., 2010). These systems are reactive
(sensu Allen, 2008b) and comprise sediment-routing segments in
close proximity: erosion zones are located adjacent to short transfer
zones and offshore confined basins that make up the accumulation
zone. Noise over historical timescales can be especially problematic as
the observationalwindow is small and the number of signals potentially
large (e.g., Sommerfield and Wheatcroft, 2007).

Timescale of observation is fundamentally important for signal
analysis in sedimentary systems. Temporal aspects discussed in this
review include the duration and period of forcings, the resolution of
chronologic tools with which to evaluate Qs (Fig. 2), and preservation
into the record. At historical timescales the signal of interest is common-
ly an individual event, such as an earthquake, flood, or storm. At longer
timescales, shifts in the rate and style of sedimentation in the cumula-
tive record can be related to longer-period forcings. We devoted much
of our treatment of signal propagation at the intermediate timescale
(102–106 yr) because we consider this to be a critical temporal
range in which to understand these dynamics at the scale of entire
sediment-routing systems. The shorter-duration end of this range can
be linked to direct observation and measurement and the longer,
million-year end of this range can serve as a bridge to deep time. The in-
termediate timescale is the timescale of global climate cycles and the
timescale at which climate and tectonic forcings overlap. Moreover,
this is the timescale at which meso-scale stratigraphic architecture
and high-frequency stratigraphic cycles are created. Our subdivision of
timescales in this review is only to aid communication of dominant as-
pectswithin each timescale, butwe emphasize that sedimentary system
research strives to integrate across these timescales.

Our review emphasizes the role of sediment supply, yet we ac-
knowledge the role of accommodation fluctuations in the accumulation
zone as an important forcing of stratigraphic patterns (e.g., Anderson
et al., 2016–in this volume). Deciphering the relative contributions of
sediment supply versus accommodation changes to the creation of
stratigraphy has been discussed for at least a century (e.g., Grabau,
1913; Barrell, 1917) and examined via modeling studies for decades
(e.g., Jervey, 1988; Allen and Densmore, 2000; Paola, 2000; Armitage
et al., 2013). The nature of signal generation in the sink and potential
up-system propagation effects (e.g., Voller et al., 2012) deserve further
attention. Deconvolving the various external forcings from each other
and from the products of internal dynamics encoded in the geologic
record remains a prime challenge in Earth science (National Research
Council, 2010).

This review provides a set of conceptual and practical tools for
reaching informed interpretations of landscape dynamics from the
stratigraphic record. These tools include stratigraphic and sediment-
routing system characterization, sediment budgets, geochronology, de-
tritalmineral analysis (e.g., thermochronology), comparative analog ap-
proaches, and modeling techniques to measure, calculate, or estimate
the magnitude and frequency of sediment supply signals compared to
the characteristic response time of the sediment-routing systems. How-
ever, significant research challenges remain, which we distil into four
research directions:

1. Improved documentation of sediment production, transfer, and
accumulation rates in natural systems. The propagation of a signal
through a system can be characterized as a phase velocity and,
thus, knowledge of time is required. Research aimed at developing
new chronometric techniques and studies applying existing
techniques in novel ways should continue to be a focus in Earth
surface dynamics research. Such work should include the study of
and linkage between erosion, transfer, and accumulation zones
across a spectrum of system sizes andmorphologies aswell as across
a range of timescales. Within this context, the question of to what
degree patterns of stratigraphy (i.e., patterns documented in the
absence of absolute chronology) reflect process rates should be
further explored.

2. Grain-size partitioning and signal propagation. What is the size
distribution of sediments exiting the erosion zone as a function of
forcings? Our discussion of how sediment supply signals propagate
through a system and how they might be preserved in the
stratigraphic record is simplistic in that only bulk mass balance is
considered. The variability in transit distances of different grain-
size classes for a given forcing might result in the fractionation of
catchment-generated signals with certain grain-sizes temporarily
stored along the transfer zone. Attempts to capture downstream
grain-size fining and to invert it to time-averaged grain-size trends
in stratigraphy are promising but still in their embryonic stage
(e.g., Whittaker et al., 2011; Michael et al., 2013). The link between
forcings in the erosion zone and the probability density function of
the produced grain-size distribution remains a major unknown and
constitutes a fundamental input of Qs propagation models at all
temporal and spatial scales.

3. Integration of experimental and modeling approaches with natural
systems. Many of the modeling efforts reviewed here are based on
diffusion assumptions and/or empirical relationships, neither of
which truly model sediment transport. Several approaches are
currently tackling sediment transfer more explicitly, including
using increasingly complete physics of water flow and sediment
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transport (e.g., Delft3D, broadly labeled Computational Fluid
Dynamics, e.g., Lesser et al., 2004); Reduced Complexity Models
(such as cellular automata, e.g. Murray and Paola, 1997; Liang et al.,
2014); and several other modeling approaches as part of CSDMS
(Community Surface Dynamics Modeling System) (Syvitski, 2008).
These efforts are complementary and promising, but it is important
to maintain a link with natural systems in order to properly assess
the appropriate degree of complexity for which model predictions
can be compared to data from natural systems. Additionally,
scaled-downphysical experiments are contributing valuable insights
regarding the timescales of dynamics in depositional landscapes
(e.g., autogenic channel avulsion frequency; Paola et al., 2009).
However, how such timescales relate to natural-system timescales
remains an open question. These experimental approaches must
continue to strive to integrate with observation/measurement-
based approaches and vice versa.

4. Integration of particulate transfer dynamics with solute transfer and
other geochemical signals. The denudation of landscapes in erosion
zones is the sum of physical and chemical products that are moved
down system. Sedimentary archives containing chemical precipi-
tates can be reliable recorders of continental weathering as well as
atmospheric and oceanic chemistry and have been used to detect cli-
matic and/or oceanographic signals. However, studies that integrate
geochemical signal analysis with the concepts and tools for signal
propagation as a function of particulate transfer are rare. Additional
work combining the particulate and (bio)geochemical perspectives
to examine sedimentary system response to environmental change
(e.g., Foremanet al., 2012) are necessary to develop a comprehensive
understanding of the broader Earth surface system.
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